Inference of switching networks by using a piecewise linear formulation

Akçay, Didem
Inference of regulatory networks has received attention of researchers from many fields. The challenge offered by this problem is its being a typical modeling problem under insufficient information about the process. Hence, we need to derive the apriori unavailable information from the empirical observations. Modeling by inference consists of selecting or defining the most appropriate model structure and inferring the parameters. An appropriate model structure should have the following properties. The model parameters should be inferable. Given the observation and the model class, all parameters used in the model should have a unique solution restriction of the solution space). The forward model should be accurately computable (restriction of the solution space). The model should be capable of exhibiting the essential qualitative features of the system (limit of the restriction). The model should be relevant with the process (limit of the restriction). A piecewise linear formulation, described by a switching state transition matrix and a switching state transition vector with a Boolean function indicating the switching conditions is proposed for the inference of gene regulatory networks. This thesis mainly concerns using a formulation of switching networks obeying all the above mentioned requirements and developing an inference algorithm for estimating the parameters of the formulation. The methodologies used or developed during this study are applicable to various fields of science and engineering.


A mathematical modeling and approximation of gene expression patterns by linear and quadratic regulatory relations and analysis of gene networks
Yılmaz, Fatma Bilge; Weber, Gerhard Wilhelm; Department of Scientific Computing (2004)
This thesis mainly concerns modeling, approximation and inference of gene regulatory dynamics on the basis of gene expression patterns. The dynamical behavior of gene expressions is represented by a system of ordinary di erential equations. We introduce a gene-interaction matrix with some nonlinear entries, in particular, quadratic polynomials of the expression levels to keep the system solvable. The model parameters are determined by using optimization. Then, we provide the time-discrete approximation of o...
ONDER, M; Kuzuoğlu, Mustafa (Institution of Engineering and Technology (IET), 1992-10-01)
An optimisation approach is presented for the problem of reconstructing the permittivity and conductivity profiles of a dielectric slab from the reflected and transmitted field data. The problem is treated as an optimal control problem where the norm of the difference of measured and calculated boundary data is minimised subject to the state equation governing the system. The original constrained optimisation problem is reduced to the evaluation of stationary points of an augmented functional which is obtai...
MOURANT, RR; Tarı, Zehra Sibel (Elsevier BV, 1993-09-01)
Recent Improvements in document image systems and their low-cost implementation on networks of microcomputers is leading to the reengineering of many information systems. We describe how document image systems can be applied to information systems. In order to compare the performance of a conventional information system with one implemented with document imaging processing capability we conducted a discrete event simulation. We modeled the conventional information system for processing graduate student ...
Inference of piecewise linear systems with an improved method employing jump detection
Selçuk, Ahmet Melih; Öktem, Hakan; Department of Scientific Computing (2007)
Inference of regulatory relations in dynamical systems is a promising active research area. Recently, most of the investigations in this field have been stimulated by the researches in functional genomics. In this thesis, the inferential modeling problem for switching hybrid systems is studied. The hybrid systems refers to dynamical systems in which discrete and continuous variables regulate each other, in other words the jumps and flows are interrelated. In this study, piecewise linear approximations are u...
Exponential stability of periodic solutions of recurrent neural networks with functional dependence on piecewise constant argument
Akhmet, Marat; Cengiz, Nur (The Scientific and Technological Research Council of Turkey, 2018-01-01)
In this study, we develop a model of recurrent neural networks with functional dependence on piecewise constant argument of generalized type. Using the theoretical results obtained for functional differential equations with piecewise constant argument, we investigate conditions for existence and uniqueness of solutions, bounded solutions, and exponential stability of periodic solutions. We provide conditions based on the parameters of the model.
Citation Formats
D. Akçay, “Inference of switching networks by using a piecewise linear formulation,” M.S. - Master of Science, Middle East Technical University, 2005.