Finite element modeling of electromagnetic radiation

Yılmaz, Asım Egemen
In this thesis, quadratic hexahedral edge elements have been applied to the three dimensional for open region electromagnetic scattering problems. For this purpose, a semi-automatic all-hexahedral mesh generation algorithm is developed and implemented. Material properties inside the elements and along the edges are also determined and prescribed during the mesh generation phase in order to be used in the solution phase. Based on the condition number quality metric, the generated mesh is optimized by means of the Particle Swarm Optimization (PSO) technique. A framework implementing hierarchical hexahedral edge elements is implemented to investigate the performance of linear and quadratic hexahedral edge elements. Perfectly Matched Layers (PMLs), which are implemented by using a complex coordinate transformation, have been used for mesh truncation in the software. Sparse storage and relevant efficient matrix ordering are used for the representation of the system of equations. Both direct and indirect sparse matrix solution methods are implemented and used. Performance of quadratic hexahedral edge elements is deeply investigated over the radar cross-sections of several curved or flat objects with or without patches. Instead of the de-facto standard of 0.1 wavelength linear element size, 0.3-0.4 wavelength quadratic element size was observed to be a new potential criterion for electromagnetic scattering and radiation problems.


Finite element modeling of electromagnetic radiation
Özgün, Özlem; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2007)
The Finite Element Method (FEM) is a powerful numerical method to solve wave propagation problems for open-region electromagnetic radiation/scattering problems involving objects with arbitrary geometry and constitutive parameters. In high-frequency applications, the FEM requires an electrically large computational domain, implying a large number of unknowns, such that the numerical solution of the problem is not feasible even on state-of-the-art computers. An appealing way to solve a large FEM problem is to...
Design and implementation of microwave lumped components and system integration using MEMS technology
Temoçin, Engin Ufuk; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the design and fabrication of coplanar waveguide to microstrip transitions and planar spiral inductors, and the design of metal-insulator-metal capacitors, a planar band-pass, and a low-pass filter structures as an application for the inductors and capacitors using the RF MEMS technology. This thesis also includes a packaging method for RF MEMS devices with the use of “benzocyclobutene” as bonding material. The transition structures are formed by four different methods between coplanar ...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
The electrical characteristics of antennas in their operational environment
Afacan, Gönenç; Tuncay, Birand; Department of Electrical and Electronics Engineering (2007)
This thesis investigates the variations of electrical properties of linear antennas mounted on certain platforms, depending on the physical properties of that platform. In this respect, related basic antenna simulations, electromagnetic simulations from primitive to complex models of airframes, and scale model measurements were used. Firstly, electrical properties of monopoles at known environment were examined and basic analyses were performed via an electromagnetic simulation tool, named CST Microwave Stu...
Modelling of X-Band electromagnetic wave propagation
Pelgur, Ali; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2007)
Calculation of electromagnetic wave propagation over irregular terrain is an important problem in many applications such as coverage calculations for radars or communication links. Many different approaches to this problem may be found in the literature. One of the most commonly used methods to solve electromagnetic boundary value problems is the Method of Moments (MoM). However, especially at high frequencies, the very large number of unknows required in the MoM formulation, limits the applicability of thi...
Citation Formats
A. E. Yılmaz, “Finite element modeling of electromagnetic radiation,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.