Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fully Coupled Smoothed Particle Hydrodynamics-Finite Element Method Approach for Fluid-Structure Interaction Problems With Large Deflections
Date
2019-08-01
Author
Dincer, A. Ersin
Demir, Abdullah
Bozkuş, Zafer
Tijsseling, Arris S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
260
views
0
downloads
Cite This
In this study, a combination of the smoothed particle hydrodynamics (SPH) and finite element method (FEM) solving the complex problem of interaction between fluid with free surface and an elastic structure is studied. A brief description of SPH and FEM is presented. Contact mechanics is used for the coupling between fluid and structure, which are simulated with SPH and FEM, respectively. In the proposed method, to couple meshfree and mesh-based methods, fluid and structure are solved together by a complete stiffness matrix instead of iterative predictive-corrective or master-slave methods. In addition, fully dynamic large-deformation analysis is carried out in FEM by taking into account mass and damping of the elastic structure. Accordingly, a two-dimensional fluid-structure interaction (FSI) code is developed and validated with two different experiments available in the literature. The results of the numerical method are in good agreement with the experiments. In addition, a novel laboratory experiment on a dam break problem with elastic gate in which the length of the initial water column is larger than its height is conducted. The main difference between the previous experiments and the one conducted in this study is that an upward water motion parallel to the elastic gate is observed at the upstream side of the gate. This motion is captured with the numerical method.
Subject Keywords
Mechanical Engineering
URI
https://hdl.handle.net/11511/43133
Journal
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4043058
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Analysis of thin walled open section tapered beams using hybrid stress finite element method
Akman, Mehmet Nazım; Oral, Süha; Department of Mechanical Engineering (2008)
In this thesis, hybrid stress finite element is formulated for the analysis of the isotropic, thin walled, open section beams with variable cross sections. The beam element has two nodes each having seven degrees of freedom. Assumption of stress field is sufficient to determine the element stiffness matrix. Axial, flexural and torsional effects are taken into account in the analysis. The methodology can be applied both to the tapered and the uniform beams. Throughout this study, firstly element cross-sectio...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Three dimensional fracture analysis of FGM coatings
İnan, Özgür; Dağ, Serkan; Department of Mechanical Engineering (2004)
The main objective of this study is to model the three dimensional surface cracking problem in Functionally Graded Material (FGM) coatings bonded to homogeneous substrates. The FGM coating is assumed to be a (ZrO2) ا (Ti-6Al-4V) layer. Homogeneous ceramic, metal ا rich, ceramic ا rich and linear variation material compositions are considered in the analyses. The surface crack is assumed to have a semi ا circular crack front profile. The surface crack problem in the FGM coating ا substrate system is examined...
Finite element structural model updating by using experimental frequency response functions
Öztürk, Murat; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2009)
Initial forms of analytical models created to simulate real engineering structures may generally yield dynamic response predictions different than those obtained from experimental tests. Since testing a real structure under every possible excitation is not practical, it is essential to transform the initial mathematical model to a model which reflects the characteristics of the actual structure in a better way. By using structural model updating techniques, the initial mathematical model is adjusted so that...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. E. Dincer, A. Demir, Z. Bozkuş, and A. S. Tijsseling, “Fully Coupled Smoothed Particle Hydrodynamics-Finite Element Method Approach for Fluid-Structure Interaction Problems With Large Deflections,”
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43133.