Some generalized multipartite access structures

Kaşkaloğlu, Kerem
In this work, we study some generalized multipartite access structures and linear secret sharing schemes for their realizations. Given a multipartite set of participants with m compartments (or levels) and m conditions to be satisfied by an authorized set, we firstly examine the intermediary access structures arousing from the natural case concerning that any c out of m of these conditions suffice, instead of requiring anyone or all of the m conditions simultaneously, yielding to generalizations for both the compartmented and hierarchical cases. These are realized essentially by employing a series of Lagrange interpolations and a simple frequently-used connective tool called access structure product, as well as some known constructions for existing ideal schemes. The resulting schemes are non-ideal but perfect. We also consider nested multipartite access structures, where we let a compartment to be defined within another, so that the access structure is composed of some multipartite substructures. We extend formerly employed bivariate interpolation techniques to multivariate interpolation, in order to realize such access structures. The generic scheme we consider is perfect with a high probability such as 1-O(1/q) on a finite field F_q. In particular, we propose a non-nested generalization for the conventional compartmented access structures, which depicts a stronger way of controlling the additional participants.


Results on lcz sequences and quadratic forms
Saygı, Elif; Özbudak, Ferruh; Department of Cryptography (2009)
In this thesis we study low correlation zone (LCZ) sequence sets and a class of quadratic forms. In the first part we obtain two new classes of optimal LCZ sequence sets. In our first construction using a suitable orthogonal transformation we extend some results of [21]. We give new classes of LCZ sequence sets defined over Z4 in our second construction. We show that our LCZ sequence sets are optimal with respect to the Tang, Fan and Matsufiji bound [37]. In the second part we consider some special lineariz...
Basic cryptanalysis methods on block ciphers
Çelik, Dilek; Doğanaksoy, Ali; Department of Cryptography (2010)
Differential cryptanalysis and linear cryptanalysis are the first significant methods used to attack on block ciphers. These concepts compose the keystones for most of the attacks in recent years. Also, while designing a cipher, these attacks should be taken into consideration and the cipher should be created as secure against them. Although di fferential cryptanalysis and linear cryptanalysis are still important, they started to be ine cient due to the improvements in the technology. So, these attacks are ...
On statistical analysis of synchronous stream ciphers
Sönmez Turan, Meltem; Doğanaksoy, Ali; Department of Cryptography (2008)
Synchronous stream ciphers constitute an important class of symmetric ciphers. After the call of the eSTREAM project in 2004, 34 stream ciphers with different design approaches were proposed. In this thesis, we aim to provide a general framework to analyze stream ciphers statistically. Firstly, we consider stream ciphers as pseudo random number generators and study the quality of their output. We propose three randomness tests based on one dimensional random walks. Moreover, we theoretically and experimenta...
Statistical analysis of block ciphers and hash functions
Sulak, Fatih; Doğanaksoy, Ali; Department of Cryptography (2011)
One of the most basic properties expected from block ciphers and hash functions is passing statistical randomness testing, as they are supposed to behave like random mappings. Previously, testing of AES candidate block ciphers was done by using the statistical tests defined in the NIST Test Suite. As some of the tests in this suite require long sequences, data sets are formed by concatenating the outputs of the algorithms obtained from various input types. However, the nature of block cipher and hash functi...
Combined attacks on block ciphers
Öztop, Neşe; Doğanaksoy, Ali; Department of Cryptography (2009)
Cryptanalytic methods are very important tools in terms of evaluating the security of block ciphers in a more accurate and reliable way. Differential and linear attacks have been the most effective cryptanalysis methods since the early 1990s. However, as the technology developed and more secure ciphers are designed, these fundamental methods started to be not so efficient. In order to analyze the ciphers, new methods should be introduced. One approach is inventing new techniques that are different from the ...
Citation Formats
K. Kaşkaloğlu, “Some generalized multipartite access structures,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.