Conversion of lignocellulosic biomass to nanofiber by microfluidization and its effect on the enzymatic hydrolysis

Download
2010
Yavaş, Sinem
Lignocellulosic biomass is under extensive investigation as a bioethanol and bio-based materials feedstock. However, the complex structural and chemical mechanisms of lignocellulosic plant, which cause resistance to deconstruction during saccharification, require a pretreatment process. In this study, raw materials (corn bran, wheat bran and wheat straw) were selected because of their production and consumption in Turkey and also their accessibilities to be used as bioethanol source. Microfluidization pretreatment (high-pressure fluidization), which stands as a new approach for nano-cellulosic fibers production, was studied at 500 bar and 2000 bar to observe the qualitative and quantitative modifications in enzymatic hydrolysis depending on its effects on lignocellulosic structure. Optimum cellulase concentrations were determined for microfluidized samples as 4.5 U/g dry biomass for wheat bran, corn bran and 6.0 U/g dry biomass for wheat straw samples for the first 150 min interval. Effective usage of solid loads were found as 5.0 %, 2.5 %, and 7.5 % (dw/v) for wheat bran, wheat straw and corn bran, respectively. X-ray diffraction and SEM results of the microfluidized samples have indicated that the pretreatment has increased crystallinity index of all the samples and resulted in a scattered structure. Comparisons with other methods (softening, dilute-acid and lime pretreatments) have shown that microfluidization is advantageous over others by reducing the time required for enzymatic hydrolysis and thus can be a promising alternative pretreatment.

Suggestions

Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species
Celik, E; Çalık, Pınar (Wiley, 2004-03-01)
After screening potential beta-lactamase producers in a medium containing penicillin G, an inducible (Bacillus subtilis NRS 1125) and a constitutive (Bacillus licheniformis 749/C ATCC 25972) P-lactamase producer were selected. As the highest enzyme activity was obtained with B. licheniformis 749/C, the effects of the concentration of carbon sources, i.e., glucose, fructose, sucrose, citric acid, and glycerol, and nitrogen sources, i.e., (NH4)(2)HPO4, NH4Cl, yeast extract, casamino acids and peptone, pH, and...
Production of recombinant proteins by yeast cells
Celik, Eda; Çalık, Pınar (Elsevier BV, 2012-09-01)
Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosa...
Monovalent cations and their influence on activated sludge floc chemistry, structure, and physical characteristics
Kara, F.; Gurakan, G. C.; Sanin, Faika Dilek (Wiley, 2008-06-01)
Multivalent cations have been known to be important components of activated sludge floc structure due to their bridging ability of the negatively charged sites on the biopolymer network. Recently in batch systems it was found that excess concentration of monovalent cations led to the deterioration in settleability, dewaterability of sludges and effluent quality of the system. In this study, effect of influent monovalent cations (potassium and sodium) on activated sludge floc structure was investigated in se...
Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.
Şeker, Tamay; Nielsen, J (Springer Science and Business Media LLC, 2005-04-01)
The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl CoA, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the ...
Kinetics of riboflavin production by Brewers' yeasts
Tamer, I.M.; Özilgen , Mustafa; Ungan, Suat (Elsevier BV, 1988-12)
The kinetics of riboflavin production by Saccharomyces cerevisiae and Saccharomyces carlsbergensis in synthetic media and wort were studied. The results indicated that riboflavin was produced by growing cells only. Riboflavin production rate was proportional to growth rate of the yeasts in the exponential phase. Riboflavin was depleted in the stationary phase. The depletion rate was expressed with a first-order kinetic expression in yeast concentration. The kinetics of substrate utilization and ethanol prod...
Citation Formats
S. Yavaş, “Conversion of lignocellulosic biomass to nanofiber by microfluidization and its effect on the enzymatic hydrolysis,” M.S. - Master of Science, Middle East Technical University, 2010.