Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.
Date
2005-04-01
Author
Şeker, Tamay
Nielsen, J
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
247
views
0
downloads
Cite This
The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl CoA, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the precise analysis of the intracellular concentration of acetoacetyl CoA, acetyl CoA and HMG CoA; and we used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase/specific growth rate and the carbon source, in a way which indicated that the synthesis of acetoacetyl CoA and HMG CoA is subject to glucose repression. In the glucose batch, acetyl CoA accumulated during the growth on glucose and, just after glucose depletion, HMG CoA and acetoacetyl CoA started to accumulate during the growth on ethanol. In the galactose batch, HMG CoA accumulated during the growth on galactose and a high level was maintained into the ethanol growth phase; and the levels of acetyl CoA and HMG CoA were more than two-fold higher in the galactose batch than in the glucose batch.
Subject Keywords
Biotechnology
,
Applied Microbiology and Biotechnology
,
General Medicine
URI
https://hdl.handle.net/11511/48693
Journal
Applied microbiology and biotechnology
DOI
https://doi.org/10.1007/s00253-004-1697-0
Collections
Test and Measurement Center In advanced Technologies (MERKEZ LABORATUVARI), Article
Suggestions
OpenMETU
Core
Targeted disruption of homoserine dehydrogenase gene and its effect on cephamycin C production in Streptomyces clavuligerus
Yilmaz, Ebru I.; Caydasi, Ayse K.; Özcengiz, Gülay (Springer Science and Business Media LLC, 2008-01-01)
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for beta-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M (r) of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protei...
Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis
Ertekin, Ozan; Taskin, Ash Aras; Demir, Mustafa; Karataş, Ayten; Özcengiz, Gülay (Springer Science and Business Media LLC, 2020-04-01)
Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA '::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, n...
Determination and metabolic engineering of rate limiting reactions in aromatic amino acid pathway in Bacillus subtilis for L-phenylaianine production
Guzide, Calik; Yasemin, Demirci; Pinar, Calik; Ozdamar, Tuncer H. (2007-09-01)
Rate limiting reactions in the aromatic-group amino acid pathway (AAAP) in Bacillus subtilis for l-phenylalanine (Phe) production were determined as reported elsewhere (Özçelik-Şenver et al., 2004). The biochemical reactions in the AAAP start with the reaction using phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) synthesised in the glycolysis pathway and the PPP, respectively, leading to the formation of Phe via chorismate by branching at prephenate. The branch-point metabolites E4P supplied in vi...
Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum
Kocabas, Didem Sutay; Bakir, Ufuk; Phillips, Simon E. V.; McPherson, Michael J.; Ögel, Zümrüt Begüm (Springer Science and Business Media LLC, 2008-06-01)
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme ...
Role of the cmcH-ccaR intergenic region and ccaR overexpression in cephamycin C biosynthesis in Streptomyces clavuligerus
Kurt, Aslihan; Alvarez-Alvarez, Ruben; Liras, Paloma; Özcengiz, Gülay (Springer Science and Business Media LLC, 2013-07-01)
The effect of the CcaR regulatory protein on expression of the cephamycin C gene cluster is studied. Quantitative reverse transcription PCR (qRT-PCR) expression analysis of the cephamycin biosynthesis genes in the ccaR-disrupted strain, S. clavuligerus ccaR::aph, revealed that in the absence of CcaR, the lat and cmcI genes expression was reduced 2,200-and 1,087-fold compared with the wild type. Expression of pcbAB-pcbC-cefD-cefE-cmcJ-cmcH and blp was 225- to 359-fold lower, while expression of pcbR-pbpA-bla...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Şeker and J. Nielsen, “Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.,”
Applied microbiology and biotechnology
, pp. 119–24, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48693.