A cellular automaton based electromechanical model of the heart

Download
2010
Bora, Ceren
The heart is a muscular organ which acts as a biomechanical pump. Electrical impulses are generated in specialized cells and flow through the heart myocardium by the ion changes on the cell membrane which is the beginning of both the electrical and the mechanical activity. Both the electrical and the mechanical states of the organ will directly affect the pumping activity. The main motivation of this thesis is to better understand physiological and pathological properties of the heart muscle via studying the electro-mechanics of the heart. This model could be used to gain better solutions of the ill-posed inverse problem of ECG and Body Surface Potential Maps (BSPM) or to estimate the electrical propagation and mechanical response on patient specific heart geometry models which can be obtained by using MRI technique. Cellular automaton technique will be used to simulate the physiological function of the left ventricle to estimate the cardiac functions. To model the heart tissue firstly the anatomical knowledge of the heart will be used such as properties of the myocardium, fiber orientations, etc. to simulate the three dimensional electrical propagation. Then the mechanical activity consisting of contraction and relaxation will be simulated according to the material properties of the heart. Using this simulation, the effects of the cardiac arrhythmias such as reentry will be generated. In this study, electrical and mechanical properties of the heart tissue are modeled for normal heart beat and heart beat in case of ischemic heart tissue. Contraction of the tissue via electrical activation has also been considered in terms of time synchronization. “Cellular automaton” method is used for modeling the electromechanical interactions in the heart tissue. A simplified left ventricle model is used to observe the electrical and the mechanical behavior. Using this method, both the normal heart beat’s electrical activation and the arrhythmia excitation could be taken on, without using complex differential equations. To consider the anisotropy of the heart tissue, fiber orientations have also been added to the model. In this thesis work, electro-mechanic models at cellular, macroscopic and heart left ventricle level are presented. The electro-mechanical adaptation is performed by cellular electrophysiology and cellular force development due to intercellular excitation propagation. Varying densities of transmembrane proteins, changes on concentration of calcium, metabolic and hormonal effects are neglected. Also in simplified ventricular model the fluid mechanics and mechanoelectrical feed-back is not taken into-account.

Suggestions

IDENTIFYING POTENTIAL DESIGN INTERVENTIONS FOR HEART-LUNG MACHINES
Dönertaş, Eren; Şener Pedgley, Bahar; Department of Industrial Design (2023-2-13)
Heart-lung machine (HLM) overtakes the functions of the heart and lungs during cardiovascular (open-heart) surgeries. Perfusionists, trained personnel, are in charge of operating, maintaining, and calibrating HLMs. There are some risks associated with cardiovascular surgery due to mistakes made by perfusionists. This creates adverse effects for patients undergoing cardiovascular surgery, operators using the device, and hospital management. In this study, the functions and working principles of HLM, the nee...
Solution of inverse problem of electrocardiography using state space models
Aydın, Ümit; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2009)
Heart is a vital organ that pumps blood to whole body. Synchronous contraction of the heart muscles assures that the required blood flow is supplied to organs. But sometimes the synchrony between those muscles is distorted, which results in reduced cardiac output that might lead to severe diseases, and even death. The most common of heart diseases are myocardial infarction and arrhythmias. The contraction of heart muscles is controlled by the electrical activity of the heart, therefore determination of that...
Electromechanical heart tissue model using cellular automaton Hücresel otomaton yöntemi i̇le elektromekanik kalp doku modeli
Bora, Ceren; Serinağaoğlu Doğrusöz, Yeşim; Tönük, Ergin (2010-07-15)
In this study, electrical and mechanical properties of the heart tissue are modeled for normal heart beat. Contraction of the tissue via electrical activation has also been considered in terms of time synchronization. “Cellular automaton” method is used for modeling the 2 dimensional heart tissue and electromechanical interactions. Using this method, both the normal heart beat's electrical activation and the arrhythmia excitation could be taken on, without using complex differential equations. To consider t...
Simulation of transmembrane potential propagation in three dimensional ventricular tissue using Aliev Panfilov model
Seyedebrahimi, MirMehdi; Serinağaoğlu Doğrusöz, Yeşim; Eyyüpkoca, Ferhat; Department of Biomedical Engineering (2015)
Heart is a muscular tissue that circulates blood through the circulatory system, and has a role in providing oxygen and nutrition to body organs and removal of wastes from them. Any disorder in the function of this organ can lead to severe diseases, and even death. Thus, characterization of these diseases and their mechanisms is important, and helps the clinicians diagnose, treat, and predict these diseases. The contraction of heart muscle is dependent on its electrical activity, and determination of this a...
Non-invasive acoustic detection of vascular diseases from skin surface using computational techniques with fluid-structure interaction
Salman, Hüseyin Enes; Yazıcıoğlu, Yiğit; Ciğeroğlu, Ender; Department of Mechanical Engineering (2018)
Atherosclerosis is a cardiovascular disease in which arterial occlusion adversely affects blood circulation. Because of the narrowing of the artery, the blood flow is disturbed and a recirculating flow occurs at the downstream of the stenosis exit. The dynamic pressure fluctuations on the inner arterial wall cause the blood vessel wall to vibrate and the resulting acoustic energy propagates through the surrounding soft tissue and reaches the skin surface. To understand the problem in more detail, computatio...
Citation Formats
C. Bora, “A cellular automaton based electromechanical model of the heart,” M.S. - Master of Science, Middle East Technical University, 2010.