A compact cryptographic processor for IPSec applications

Kavun, Elif Bilge
A compact cryptographic processor with custom integrated cryptographic coprocessors is designed and implemented. The processor is mainly aimed for IPSec applications, which require intense processing power for cryptographic operations. In the present design, this processing power is achieved via the custom cryptographic coprocessors. These are an AES engine, a SHA-1 engine and a Montgomery modular multiplier, which are connected to the main processor core through a generic flexible interface. The processor core is fully compatible with Zylin Processor Unit (ZPU) instruction set, allowing the use of ZPU toolchain. A minimum set of required instructions is implemented in hardware, while the rest of the instructions are emulated in software. The functionality of the cryptographic processor and its suitability for IPSec applications are demonstrated through implementation of sample IPSec protocols in C-code, which is compiled into machine code and run on the processor. The resultant processor, together with the sample codes, presents a pilot platform for the demonstration of hardware/software co-design and performance evaluation of IPSec protocols and components.


GOKMEN, A; YALCIN, S (1992-01-01)
A versatile interface card for Apple IIe computer and various peripheral devices are designed to control instruments which generates transient signals like in graphite furnace atomic spectrometer. The interface card consists of a multiplexed analog-to-digital converter, a digital-to-analog converter, and a timer/counter chip. The timer/counter chip with 16 built-in registers can be programmed in many modes which provides a time base for real-time measurements. A stepper motor runs under the control of ti...
An asynchronous system design and implementation of an FPGA
Ayyıldız, Nizam; Güran, Hasan; Department of Electrical and Electronics Engineering (2006)
Field Programmable Gate Arrays (FPGAs) are widely used in prototyping digital circuits. However commercial FPGAs are not very suitable for asynchronous design. Both the architecture of the FPGAs and the synthesis tools are mostly tailored to synchronous design. Therefore potential advantages of the asynchronous circuits could not be observed when they are implemented on commercial FPGAs. This is shown by designing an asynchronous arithmetic logic unit (ALU), implemented in the style of micropipelines, on th...
A measurement framework for component oriented software systems
Salman, Nael; Doğru, Ali Hikmet; Department of Computer Engineering (2006)
A measurement framework is presented for component oriented (CO) software systems. Fundamental concepts in component orientation are defined. The factors that influence CO systems’ structural complexity are identified. Metrics quantifying and characterizing these factors are defined. A set of properties that a CO complexity metric must satisfy are defined. Metrics are evaluated first using the set of properties defined in this thesis and also using the set of properties defined by Tian and Zelkowitz in [84]...
A Cascadable Random Neural Network Chip with Reconfigurable Topology
Badaroglu, Mustafa; Halıcı, Uğur; Aybay, Isik; Cerkez, Cuneyt (Oxford University Press (OUP), 2010-03-01)
A digital integrated circuit (IC) is realized using the random neural network (RNN) model introduced by Gelenbe. The RNN IC employs both configurable routing and random signaling. In this paper we present the networking/routing aspects as well as the performance results of an RNN network implemented by the RNN IC. In the RNN model, each neuron accumulates arriving signals and can fire if its potential at a given instant of time is strictly positive. Firing occurs at random, the intervals between successive ...
An FPGA implementation of real-time electro-optic & IR image fusion
Çölova, İbrahim Melih; Akar, Gözde; Department of Electrical and Electronics Engineering (2010)
In this thesis, a modified 2D Discrete Cosine Transform based electro-optic and IR image fusion algorithm is proposed and implemented on an FPGA platform. The platform is a custom FPGA board which uses ALTERA Stratix III family FPGA. The algorithm is also compared with state of the art image fusion algorithms by means of an image fusion software application GUI developed in Matlab®. The proposed algorithm principally takes corresponding 4x4 pixel blocks of two images to be fused and transforms them by means...
Citation Formats
E. B. Kavun, “A compact cryptographic processor for IPSec applications,” M.S. - Master of Science, Middle East Technical University, 2010.