Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Robust conic quadratic programming applied to quality improvement -a robustification of CMARS
Download
index.pdf
Date
2010
Author
Özmen, Ayşe
Metadata
Show full item record
Item Usage Stats
274
views
145
downloads
Cite This
In this thesis, we study and use Conic Quadratic Programming (CQP) for purposes of operational research, especially, for quality improvement in manufacturing. In previous works, the importance and benefit of CQP in this area became already demonstrated. There, the complexity of the regression method Multivariate Adaptive Regression Spline (MARS), which especially means sensitivity with respect to noise in the data, became penalized in the form of so-called Tikhonov regularization, which became expressed and studied as a CQP problem. This was leading to the new method CMARS; it is more model-based and employs continuous, actually, well-structured convex optimization which enables the use of Interior Point Methods and their codes such as MOSEK. In this study, we are generalizing the regression problem by including uncertainty in the model, especially, in the input data, too. CMARS, recently developed as an alternative method to MARS, is powerful in overcoming complex and heterogeneous data. However, for MARS and CMARS method, data are assumed to contain fixed variables. In fact, data include noise in both output and input variables. Consequently, optimization problem’s solutions can show a remarkable sensitivity to perturbations in the parameters of the problem. In this study, we include the existence of uncertainty in the future scenarios into CMARS and robustify it with robust optimization which is dealt with data uncertainty. That kind of optimization was introduced by Aharon Ben-Tal and Arkadi Nemirovski, and used by Laurent El Ghaoui in the area of data mining. It incorporates various kinds of noise and perturbations into the programming problem. This robustification of CQP with robust optimization is compared with previous contributions that based on Tikhonov regularization, and with the traditional MARS method.
Subject Keywords
Quadratic programming.
URI
http://etd.lib.metu.edu.tr/upload/12612513/index.pdf
https://hdl.handle.net/11511/20147
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Parameter estimation in generalized partial linear models with conic quadratic programming
Çelik, Gül; Weber, Gerhard Wilhelm; Department of Scientific Computing (2010)
In statistics, regression analysis is a technique, used to understand and model the relationship between a dependent variable and one or more independent variables. Multiple Adaptive Regression Spline (MARS) is a form of regression analysis. It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models non-linearities and interactions. MARS is very important in both classification and regression, with an increasing number of applications in many areas...
ROBUST CONIC GENERALIZED PARTIAL LINEAR MODELS USING RCMARS METHOD - A ROBUSTIFICATION OF CGPLM
Ozmen, Ayse; Weber, Gerhard Wilhelm (2012-08-08)
GPLM is a combination of two different regression models each of which is used to apply on different parts of the data set. It is also adequate to high dimensional, non-normal and nonlinear data sets having the flexibility to reflect all anomalies effectively. In our previous study, Conic GPLM (CGPLM) was introduced using CMARS and Logistic Regression. According to a comparison with CMARS, CGPLM gives better results. In this study, we include the existence of uncertainty in the future scenarios into CMARS a...
Non-linear programming models for sector and policy analysis
Bauer, Siegfried; Kasnakoglu, Haluk (Elsevier BV, 1990-7)
This paper examines the basic problems of the mathematical programming models used for agricultural sector and policy analysis. Experience with traditional programming models shows that a considerable improvement in performance is possible by adequately incorporating non-linear relationships. Particular emphasis will be given to the calibration and validation problems involved in this type of model. With the help of the Turkish agricultural sector model it will be demonstrated that an empirical specificatio...
Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty
Ozmen, Ayse; Kropat, Erik; Weber, Gerhard Wilhelm (2017-01-01)
In our study, we integrate the data uncertainty of real-world models into our regulatory systems and robustify them. We newly introduce and analyse robust time-discrete target-environment regulatory systems under polyhedral uncertainty through robust optimization. Robust optimization has reached a great importance as a modelling framework for immunizing against parametric uncertainties and the integration of uncertain data is of considerable importance for the model's reliability of a highly interconnected ...
Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility
Erbaş, Ayhan Kürşat; Kaya, Sukru (2015-04-01)
The purpose of this study was to explore the effect of a technology-supported learning environment utilizing an interactive whiteboard (IWB) and NuCalc graphing software compared to a traditional direct instruction-based environment on student achievement in graphs of quadratic functions and attitudes towards mathematics and technology. Sixty-five high school graduates attending cram schools (called dershane in Turkish) to study for the university entrance examination participated in the study. The signific...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Özmen, “Robust conic quadratic programming applied to quality improvement -a robustification of CMARS,” M.S. - Master of Science, Middle East Technical University, 2010.