Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Data mining framework to detect tariff code circumvention in Turkish customs database
Download
index.pdf
Date
2012
Author
Baştabak, Burcu
Metadata
Show full item record
Item Usage Stats
4
views
4
downloads
Customs and foreign trade regulations are made to regulate import and export activities. The majority of these regulations are applied on import procedures. The country of origin and the tariff code become important when determining the tax amount of the merchandise in importation. Anti-dumping duty is defined as a financial penalty, published by the Ministry of Economy, enforced for suspiciously low priced imports in order to protect the local industry from unfair competition. It is accrued according to tariff code and the country of origin. To avoid such an obligation in order to not to pay tax, a tariff code that is different from the original tariff code may be declared on the customs declaration which is called as "Tariff Code Circumvention". To identify such misdeclarations, a physical examination of the merchandise is required. However, with limited personnel resources, the physical examination of all imported merchandise is not possible. In this study, a data mining framework is developed on Turkish customs database in order to detect “Tariff Code Circumvention”. For this purpose, four types of products, which are the most circumvented goods in the Turkish customs, have been chosen. First, with the help of Risk Analysis Office, the significant features are identified. Then, Infogain algorithm is used for ranking these features. Finally, KNN algorithm is applied on the Turkish customs database in order to identify the circumvented goods automatically. The results show that the framework is able to find such circumvented goods successfully.
Subject Keywords
Approximation algorithms.
,
Data mining.
,
Tariff.
,
Customs administration
,
Computer algorithms.
URI
http://etd.lib.metu.edu.tr/upload/12614616/index.pdf
https://hdl.handle.net/11511/21773
Collections
Graduate School of Informatics, Thesis