The Processing of porous Ni-Rich TiNi alloys via powder metallurgy and their characterization

Nakaş, Gül İpek
In the scope of this study, TiNi foams with porosities in the range of 39-64 vol% were processed from prealloyed powders by Mg space holder technique. Porous TiNi alloys displayed homogeneously distributed spherical pores with interconnections, which is suitable for bone ingrowth. Porous Ti-50.8 at%Ni alloys were processed by sintering at 1200 °C for 2 h to analyze the microstructure as well as mechanical behavior. SEM, TEM and XRD studies were conducted for the characterization of microstructure and phase analyses in addition to the mechanical characterization performed by monotonic and superelasticity compression tests as well as compressive fatigue tests. It was observed that stress required to trigger martensitic transformation was decreased via increasing porosity. The monotonic compression test results also indicated that altering the porosity content of TiNi foams leads to different monotonic compression behaviors. It was observed that the foams display more bulk deformation like behavior as a composite structure composed of TiNi and macropores when the porosity content was low. As the porosity content has increased, the struts became more effective and deformation proceeds by the collapse of favorable struts. On the other hand, cyclic superelasticity tests results indicated that maximum achieved and recovered strain values at the end of fifth cycle increase while the fraction of strain recovered at the end of fifth cycle decreases with decreasing porosity content. Furthermore, the fatigue lives of the processed foams were observed to vary within a band which has a width decreasing with decreasing σmax / σy yielding an endurance limit ranging in between 26-89 MPa or 0.5-0.6 σy. Fractography studies on the failed foams after fatigue testing revealed that the failure occurs by the coalescence of micro-cracks initiated from pore walls leading to macro-cracks aligned at 45o with respect to the loading axis. In addition to the mentioned characterization studies, the effects of sintering temperature and time on TiNi foams with 58 vol% porosity as well as heat treatment on the microstructure and the mechanical behavior of TiNi foams with 49 vol% porosity were analyzed with SEM and compression tests. Aging of TiNi foams with 49 vol% porosity at 450 °C for 1.5 h has shown that the presence of Ti3Ni4 precipitates improve the superelastic response.


Production and characterization of porous titanium alloys
Esen, Ziya; Bor, Şakir; Department of Metallurgical and Materials Engineering (2007)
In the present study, production of titanium and Ti6Al4V alloy foams has been investigated using powder metallurgical “space holder technique” in which magnesium powder were utilized to generate porosities in the range 30 to 90 vol. %. Also, sintering of titanium and Ti-6Al-4V alloy powders in loose and compacted condition at various temperatures (850-1250oC) and compaction pressures (120-1125 MPa), respectively, were investigated to elucidate the structure and mechanical properties of the porous cell walls...
Characterization of Ti-6Al-4V alloy foams synthesized by space holder technique
ESEN, ZİYA; Bor, Sakir (2011-03-25)
Ti-6Al-4V foams, biomedical candidate materials, were synthesized by powder metallurgical space holder technique as a result of evaporation of magnesium to achieve desired porosity content. Final products contained porosities in the range similar to 43-64% with an average macropore size between 485 and 572 mu m and a lamellar type Widmanstatten microstructure composed of alpha-platelets and beta-laths. Unlike the case of bulk Ti-6Al-4V alloy tested under compression loading, compression stress-strain curves...
The effect of annealing conditions on the red photoluminescence of nanocrystalline Si/SiO 2 films
Wu, Xiaochun; Bek, Alpan; Bittner, Alexander M.; Eggs, Ch.; Ossadnik, Ch.; VEPREK, S (Elsevier BV, 2003-02-03)
Nanocrystalline Si (nc-Si) embedded in a SiO2 matrix, fabricated by plasma CVD and a subsequent post-treatment shows a broad red photoluminescence (PL). In this paper, the effects of annealing temperature, atmosphere and time on the red PL from 1.75 to 1.5 eV have been investigated in detail. It is found that the spectral shift and the PL intensity from 1.75 to 1.5 eV show a strong and unique dependence on annealing conditions. For a PL approximately 1.75 eV, upon 400 °C forming gas annealing, the spectral ...
The Synthesis of Complex Polymer Electrolytes Based on Alginic Acid and Poly(1-vinylimidazole) and Application in Tyrosinase Immobilization
Kartal, Muejgan; Kayahan, Senem; Bozkurt, Ayhan; Toppare, Levent Kamil (Springer Science and Business Media LLC, 2009-01-01)
In this study, proton conducting polymer electrolyte networks consisting of alginic acid (AA) and poly(1-vinylimidazole) (PVI) were prepared. The polymer networks were obtained by mixing AA and PVI with several stoichiometric ratios, x (with respect to monomers). Polymer networks were characterized by FT-IR spectroscopy and their compositions were investigated by elemental analysis (EA). Enzyme entrapped polymer networks (EEPN) were produced by immobilization of tyrosinase in the AA/PVI matrix during comple...
Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers
Aydoğmuş, Tarık; Bor, Sakir (2012-11-01)
In the scope of the present study, Ni-rich TiNi (Ti-50.6 at %Ni) foams with porosities in the range 38-59% were produced by space holder technique using spherical magnesium powders as space formers. Single phase porous TiNi alloys produced with spherical pores were subjected to loading-unloading cycles in compression up to 250 MPa stress levels at different temperatures in as-processed and aged conditions. It has been observed that strength, elastic modulus and critical stress for inducing martensite decrea...
Citation Formats
G. İ. Nakaş, “The Processing of porous Ni-Rich TiNi alloys via powder metallurgy and their characterization,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.