Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
The effect of annealing conditions on the red photoluminescence of nanocrystalline Si/SiO 2 films
Date
2003-02-03
Author
Wu, Xiaochun
Bek, Alpan
Bittner, Alexander M.
Eggs, Ch.
Ossadnik, Ch.
VEPREK, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Nanocrystalline Si (nc-Si) embedded in a SiO2 matrix, fabricated by plasma CVD and a subsequent post-treatment shows a broad red photoluminescence (PL). In this paper, the effects of annealing temperature, atmosphere and time on the red PL from 1.75 to 1.5 eV have been investigated in detail. It is found that the spectral shift and the PL intensity from 1.75 to 1.5 eV show a strong and unique dependence on annealing conditions. For a PL approximately 1.75 eV, upon 400 °C forming gas annealing, the spectral shift and the peak intensity versus accumulation annealing times show a novel temporal oscillation. This unique dependence and the novel temporal oscillation behavior, which have not been reported in porous silicon, exclude nc-Si itself as the source of the red PL. Instead they favor oxygen thermal donors (TDs)-like defect states as PL centers. This is in consensus with our earlier results of defect studies using electron spin resonance in this system. Furthermore, two PL centers in this red PL were distinguished according to their variance in annealing temperature- and time-dependence. The spectral change between 1.5 and 1.75 eV upon annealing conditions can be qualitatively explained by using the formation and annihilation kinetics of two oxygen TDs-like defect state.
Subject Keywords
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Surfaces and Interfaces
,
Metals and Alloys
URI
https://hdl.handle.net/11511/42022
Journal
Thin Solid Films
DOI
https://doi.org/10.1016/s0040-6090(02)01113-6
Collections
Department of Physics, Article