Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Repeated - root cyclic codes and matrix product codes
Download
index.pdf
Date
2012
Author
Özadam, Hakan
Metadata
Show full item record
Item Usage Stats
186
views
82
downloads
Cite This
We study the Hamming distance and the structure of repeated-root cyclic codes, and their generalizations to constacyclic and polycyclic codes, over finite fields and Galois rings. We develop a method to compute the Hamming distance of these codes. Our computation gives the Hamming distance of constacyclic codes of length $np^s$\ in many cases. In particular, we determine the Hamming distance of all constacyclic, and therefore cyclic and negacyclic, codes of lengths p^s and 2p^s over a finite field of characteristic $p$. It turns out that the generating sets for the ambient space obtained by torsional degrees and strong Groebner basis for the ambient space are essentially the same and one can be obtained from the other. In the second part of the thesis, we study matrix product codes. We show that using nested constituent codes and a non-constant matrix in the construction of matrix product codes with polynomial units is a crucial part of the construction. We prove a lower bound on the Hamming distance of matrix product codes with polynomial units when the constituent codes are nested. This generalizes the technique used to construct the record-breaking examples of Hernando and Ruano. Contrary to a similar construction previously introduced, this bound is not sharp and need not hold when the constituent codes are not nested. We give a comparison of this construction with a previous one. We also construct new binary codes having the same parameters, of the examples of Hernando and Ruano, but non-equivalent to them.
Subject Keywords
Coding theory.
,
Computer security.
,
Code generators.
,
Galois theory.
URI
http://etd.lib.metu.edu.tr/upload/12615304/index.pdf
https://hdl.handle.net/11511/22177
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Generalized nonbinary sequences with perfect autocorrelation, flexible alphabets and new periods
BOZTAŞ, Serdar; Özbudak, Ferruh; TEKİN, Eda (Springer Science and Business Media LLC, 2018-05-01)
We extend the parameters and generalize existing constructions of perfect autocorrelation sequences over complex alphabets. In particular, we address the PSK+ constellation (Boztas and Udaya 2010) and present an extended number theoretic criterion which is sufficient for the existence of the new sequences with perfect autocorrelation. These sequences are shown to exist for nonprime alphabets and more general lengths in comparison to existing designs. The new perfect autocorrelation sequences provide novel a...
Randomness properties of some vector sequences generated by multivariate polynomial iterations
Gürkan Balıkçıoğlu, Pınar; Diker Yücel, Melek; Department of Cryptography (2016)
We examine the randomness properties of the sequences generated by the multivariate polynomial iterations method proposed by Ostafe and Shparlinski, by using the six different choices of polynomials given by the same authors. Our analysis is based on two approaches: distributions of the periods and linear complexities of the produced vector sequences. We define the efficiency parameters, PE for “period efficiency” and LCE for “linear complexity efficiency”, so that the actual values of the period and linear com...
Multidimensional cyclic codes and Artin–Schreier type hypersurfaces over finite fields
Güneri, Cem; Özbudak, Ferruh (Elsevier BV, 2008-1)
We obtain a trace representation for multidimensional cyclic codes via Delsarte's theorem. This relates the weights of the codewords to the number of affine rational points of Artin-Schreier type hypersurfaces over finite fields. Using Deligne's and Hasse-Weil-Serre inequalities we get bounds on the minimum distance. Comparison of the bounds is made and illustrated by examples. Some applications of our results are given. We obtain a bound on certain character sums over F-2 which gives better estimates than ...
Dense depth map estimation for multiple view coding
Ozkalayci, Burak; Alatan, Abdullah Aydın (2006-01-01)
In this paper the basics of a proposed method that handles the stereo and especially multiple view coding problem in a geometrical way, are explained. For this purpose, estimation of the depth maps of the multiple views, captured by fully calibrated cameras, are done. In depth map estimation problem Markov Random Field modelling is used to have a depth map in a desired smoothness and in an efficient coding fashion. The geometric structure which is acquired by the depth map estimation, is used to reconstruct...
Contributions on plateaued (vectorial) functions for symmetric cryptography and coding theory
Sınak, Ahmet; Özbudak, Ferruh; Mesnager, Sihem; Department of Cryptography (2017)
Plateaued functions, used to construct nonlinear functions and linear codes, play a significant role in cryptography and coding theory. They can possess various desirable cryptographic properties such as high nonlinearity, low autocorrelation, resiliency, propagation criteria, balanced-ness and correlation immunity. In fact, they provide the best possible compromise between resiliency order and nonlinearity. Besides they resist against linear cryptanalysis and fast correlation attacks due to their low Walsh...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Özadam, “Repeated - root cyclic codes and matrix product codes,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.