Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Refinements, extensions and modern applications of conic multivariate adaptive regression splines
Download
index.pdf
Date
2013
Author
Yerlikaya Özkurt, Fatma
Metadata
Show full item record
Item Usage Stats
256
views
157
downloads
Cite This
Conic Multivariate Adaptive Regression Splines (CMARS) which has been developed at the Institute of Applied Mathematics, METU, as an alternative approach to the well-known data mining tool Multivariate Adaptive Regression Splines (MARS). CMARS is based on given data and a penalized residual sum of squares for MARS, interpreted as a Tikhonov Regularization problem. CMARS treats this problem by a continuous optimization technique called Conic Quadratic Programming (CQP). This doctoral thesis adapts the CMARS model into a wide frame of advanced methods of statistics and applied mathematics. The first application is using CMARS in Generalized Partial Linear Models (GPLMs), a particular form of a semiparametric model, which extends the Generalized Linear Models (GLMs) in that the usual parametric terms are augmented by a single nonparametric component. We prefer GLMs because of their flexibility to the variety of statistical problems and the availability of software to fit the models. There are different kinds of estimation methods for GPLMs. One of the great advantages of semiparametric models consists of some grouping (linear and nonlinear or parametric and nonparametric) which could be done for the input dimensions (or features) in order to assign appropriate submodels to the groups specifically. In this thesis, for the estimation of the parametric model part, we apply the least-squares estimation. On the other hand, we consider CMARS for the nonparametric part to estimate the smooth function. This new algorithm, called CGPLM, has the advantage of higher speed and less complexity, as it accesses the use of interior point methods. The other extension is the use of CMARS method for the outlier identification problem. For this purposes, we provide a new solution by using regularization and CQP techniques to the mean-shift outlier model, which is considered as a parametric method. After that the proposed method is improved by using CMARS to represent the nonlinear structure in the data. The second track of this doctorate study is the use of CMARS method for the parameter identification of Stochastic Differential Equations (SDEs) driven by Brownian motions and fractional Brownian motions (fBms). Both systems of SDEs with standard multi-dimensional Brownian motions and systems of SDEs having correlated Brownian motions are covered in this thesis. Moreover, we introduce the CMARS method to estimate both the spline coefficients and, especially, the Hurst parameter of the SDEs driven by fBms. The theoretical results of this study may lead new implementations and applications in science, technology and finance. This PhD thesis ends with a conclusion and an outlook to future studies.
Subject Keywords
Regression analysis.
,
Multivariate analysis.
,
Outliers (Statistics).
,
Stochastic differential equations.
URI
http://etd.lib.metu.edu.tr/upload/12616723/index.pdf
https://hdl.handle.net/11511/23228
Collections
Graduate School of Applied Mathematics, Thesis
Suggestions
OpenMETU
Core
Identification of coupled systems of stochastic differential equations in finance including investor sentiment by multivariate adaptive regression splines
Kalaycı, Betül; Weber, Gerhard Wilhelm; Department of Financial Mathematics (2017)
Stochastic Differential Equations (SDEs) rapidly become the most well-known format in which to express such diverse mathematical models under uncertainty such as financial models, neural systems, micro-economic systems, and human behaviour. They are one of the main methods to describe randomness of a dynamical model today. In a financial system, different kinds of SDEs have been elaborated to model various financial assets. On the other hand, economists have conducted research on several empirical phenomena...
Continuous optimization applied in MARS for modern applications in finance, science and technology
Taylan, Pakize; Weber, Gerhard Wilhelm; Yerlikaya, Fatma (2008-05-23)
Multivariate adaptive regression spline (MARS) denotes a tool from statistics, important in classification and regression, with applicability in many areas of finance, science and technology. It is very useful in high dimensions and shows a great promise for fitting nonlinear multivariate functions. The MARS algorithm for estimating the model function consists of two subalgorithms. We propose not to use the second one (backward stepwise algorithm), but we construct a penalized residual sum of squares for a ...
EVALUATING THE CMARS PERFORMANCE FOR MODELING NONLINEARITIES
Batmaz, İnci; Kartal-Koc, Elcin; Köksal, Gülser (2010-02-04)
Multivariate Adaptive Regression Splines (MARS) is a very popular nonparametric regression method particularly useful for modeling nonlinear relationships that may exist among the variables. Recently, we developed CMARS method as an alternative to backward stepwise part of the MARS algorithm. Comparative studies have indicated that CMARS performs better than MARS for modeling nonlinear relationships. In those studies, however, only main and two-factor interaction effects were sufficient to model the nonline...
An Algorithm for the forward step of adaptive regression slines via mapping approach
Kartal Koç, Elçin; Batmaz, İnci; İyigün, Cem; Department of Statistics (2012)
In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS) is a well-known nonparametric regression technique to approximate the nonlinear relationship between a response variable and the predictors with the help of splines. MARS uses piecewise linear basis functions which are separated from each other with breaking points (knots) for function estimation. The model estimating function is generated in two stepwise procedures: forward selection and backward elimination. In the first st...
Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method
Yerlikaya-Ozkurt, F.; Vardar Acar, Ceren; Yolcu-Okur, Y.; Weber, G. -W. (2014-03-15)
In this study, we develop an alternative method for estimating the Hurst parameter using the conic multivariate adaptive regression splines (CMARS) method. We concentrate on the strong solutions of stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm). Our approach is superior to others in that it not only estimates the Hurst parameter but also finds spline parameters of the stochastic process in an adaptive way. We examine the performance of our estimations using simulated tes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Yerlikaya Özkurt, “Refinements, extensions and modern applications of conic multivariate adaptive regression splines,” Ph.D. - Doctoral Program, Middle East Technical University, 2013.