Mutual correlation of randomness test and analysis of test outputs of transformed and biased sequences

Download
2014
Akcengiz, Ziya
Randomness is one of the most important parts of the cryptography because key generation and key itself depend on random values. In literature, there exist statistical randomness tests and test suites to evaluate randomness of the cryptographic algorithm. Although there exist randomness tests, there is no mathematical evidence to prove that a sequence or a number is random. Therefore, it is vital to choose tests in the test suites due to independency and coverage of the tests used in the suites. Sensitivity of these tests to non-random data is also important. The tests should be classified to determine that tests are independent and wide. In order to classify, sensitivity of tests to transformations and to nonrandom data should be determined. Therefore, mutual correlations of tests are analyzed.

Suggestions

A Randomness test based on postulate r-2 on the number of runs
Şeker, Okan; Doğanaksoy, Ali; Department of Cryptography (2014)
Random values are considered as an indispensable part of cryptography, since they are necessary for almost all cryptographic protocols. Most importantly, key generation is done by random values and key itself should behave like a random value. Randomness is tested by statistical tests and hence, security evaluation of a cryptographic algorithm deeply depends on statistical randomness tests. In this thesis we focus on randomness postulates of Solomon W. Golomb in particular, second postulate which is about r...
Modular exponentiation methods in cryptography
Yünüak, Hasan Bartu; Cenk, Murat; Department of Cryptography (2017)
Modular exponentiation has an important role in many cryptographic algorithms. These exponentiation methods differ in the bases used and their representations, the repeating aspect, and for which algorithms they are used for: fixed or variable base. Our research aims to compare the efficiencies and implementation timings for some selected algorithms. Also, we look at the options for using a dedicated cubing algorithm, and compare them with the current algorithms.
Secure password generation through statistical randomness tests
Uslu, Aycan; Doğanaksoy, Ali; Department of Cryptography (2017)
Both symmetric and asymmetric cryptographic algorithms must firstly be robust against brute force. The key needs to be choosen uniformly and randomly from the key space. It is possible to assure randomness by using statistical randomness tests which are also critical for other cryptographic issues as well. There is still an issue to be elaborated: the most well-known tool for attacking againts passwords namely dictionary attacks. These attacks are based on trying all keys from a particular subspace of the k...
Alternative Approach to Maurer's Universal Statistical Test
Tezcan, Cihangir; Doğanaksoy, Ali (null; 2008-12-01)
Statistical tests for randomness play an important role in cryptography since many cryptographic applications require random or pseudorandom numbers. In this study, we introduce an alternative approach to Maurer’s Universal Test. This approach allows us to test short binary sequences as small as 66 bits and to choose slightly larger block sizes. Moreover, it does not have an initialization part and requires less time to test a binary sequence.
MODIFICATIONS OF KNUTH RANDOMNESS TESTS FOR INTEGER AND BINARY SEQUENCES
Koçak, Onur Ozan; SULAK, FATİH; Doğanaksoy, Ali; Uğuz, Muhiddin (2018-01-01)
Generating random numbers and random sequences that are indistinguishable from truly random sequences is an important task for cryptography. To measure the randomness, statistical randomness tests are applied to the generated numbers and sequences. Knuth test suite is the one of the first statistical randomness suites. This suite, however, is mostly for real number sequences and the parameters of the tests are not given explicitly.
Citation Formats
Z. Akcengiz, “Mutual correlation of randomness test and analysis of test outputs of transformed and biased sequences,” M.S. - Master of Science, Middle East Technical University, 2014.