Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Radiative decays of negative parity heavy baryons in the framework of the light cone QCD sum rules
Date
2017-2
Author
Agamaliev, A.K.
Alıyev, Tahmasıb
Savcı, Mustafa
Metadata
Show full item record
Item Usage Stats
158
views
0
downloads
Cite This
The transition form factors responsible for the radiative Sigma(Q) -> Lambda(Q)gamma and Xi(')(Q) -> Xi(Q)gamma So decays of the negative parity baryons are examined within light cone QCD sum rules. The decay widths of the radiative transitions are calculated using the obtained results of the form factors. A comparison of our predictions on decay widths with the corresponding widths of positive parity baryons is given.
Subject Keywords
QCD sum rules
,
Radiative decays
,
Heavy baryons
,
Negative parity
,
Decay widths
URI
https://hdl.handle.net/11511/28607
Journal
Nuclear Physics A
DOI
https://doi.org/10.1016/j.nuclphysa.2016.11.005
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Radiative decays of the heavy flavored baryons in light cone QCD sum rules
Alıyev, Tahmasıb; Özpineci, Altuğ (2009-03-01)
The transition magnetic dipole and electric quadrupole moments of the radiative decays of the sextet heavy flavored spin 3/2 to the heavy spin 1/2 baryons are calculated within the light cone QCD sum rules approach. Using the obtained results, the decay rate for these transitions are also computed and compared with the existing predictions of the other approaches.
Radiative Omega(Q)* -> Omega(Q)gamma and Xi(Q)* -> Xi(Q)'gamma transitions in light cone QCD
Alıyev, Tahmasıb; SUNDU PAMUK, HAYRİYE (2015-01-14)
We calculate the magnetic dipole and electric quadrupole moments associated with the radiative Omega(Q)* -> Omega(Q)gamma and Xi(Q)* -> Xi(Q)'gamma transitions with Q = b or c in the framework of light cone QCD sum rules. It is found that the corresponding quadrupole moments are negligibly small, while the magnetic dipole moments are considerably large. A comparison of the results of the considered multi-pole moments as well as corresponding decay widths with the predictions of the vector dominance model is...
Vector meson dominance and radiative decays of heavy spin-3/2 baryons to heavy spin-1/2 baryons
Alıyev, Tahmasıb; Savcı, Mustafa (2012-04-10)
Using the calculated values of the strong coupling constants of the heavy sextet spin-3/2 baryons to sextet and antitriplet heavy spin-1/2 baryons with light vector mesons within the light cone QCD sum rules method, and vector meson dominance assumption, the radiative decay widths are calculated. These widths are compared with the "direct" radiative decay widths predicted in the framework of the light cone QCD sum rules.
Strong Coupling Constants of Heavy Baryons With Light Mesons in QCD
Alıyev, Tahmasıb; Savcı, Mustafa (2012-06-21)
The strong coupling constants of the heavy spin-1/2 and spin-3/2 baryons with light pseudoscalar and vector mesons are calculated in the framework of the light cone QCD sum rules. Using the symmetry arguments, some structure independent relations among different correlation functions are obtained. It is shown that all possible transitions are described by only one invariant function, whose explicit expression is structure dependent.
Radiative phi -> f(0)(980)gamma decay in light cone QCD sum rules
Alıyev, Tahmasıb; Özpineci, Altuğ; Savcı, Mustafa (2002-02-21)
The light cone QCD sum rules method is used to calculate the transition form factor for the radiative phi --> f(0gamma) decay, assuming that the quark content of the f(0) meson is pare (s) over bars state. The branching ratio is estimated to be beta(phi --> f(0)gamma) = 3.5 x (1 +/- 0.3) x 10(-4). A comparison of our prediction on branching ratio with the theoretical results and experimental data existing in literature is presented.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. K. Agamaliev, T. Alıyev, and M. Savcı, “Radiative decays of negative parity heavy baryons in the framework of the light cone QCD sum rules,”
Nuclear Physics A
, pp. 38–47, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28607.