Flame retardant and water-dispersed polyurethane paints

Polat, Osman


Flame retardant alkyd paint production
Kocabaş, N. Banu; Gündüz, Güngör; Department of Polymer Science and Technology (1996)
Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives
Kilinc, Mert; ÇAKAL, GAYE ÖZGÜR; Bayram, Göknur; Eroglu, Inci; Özkar, Saim (2015-06-10)
Flame retardancy of poly(ethylene terephthalate), PET, was improved using different flame retardant additives such as triphenylphosphate, triphenylphosphine oxide, zinc borate, and boron phosphate (BP). Composites were prepared using a twin screw extruder and subsequently injection molded for characterization purposes. The flame retardancy of the composites was determined by the limiting oxygen index (LOI) test. Smoke emission during fire was also evaluated in terms of percent light transmittance. Thermal s...
Flame retardant alkyd paint production by means of poly (dibromo phenylene oxide) polymer and bis(pyridine) bis (tribromophenoxo) copper (II) complex
Kayadan, Şakir; Gündüz, Güngör; Kısakürek, Duygu; Department of Polymer Science and Technology (1996)
Steam Reforming of ethanol over sol-gel-synthesized mixed oxide catalysts
Olcay, Hakan Önder; Üner, Deniz; Department of Chemical Engineering (2005)
Depletion in the reserves of fossil fuels, inefficient energy production from these fuels and the negative effect of their usage on atmosphere, and thereby, on human health have accelerated researches on clean energy. Hydrogen produced from ethanol when used in fuel cells not only generates efficient energy but also creates a closed carbon cycle in nature. ZnO and Cu/ZnO catalysts are known with their superior performance in alcohol synthesis. From the principle of microkinetic reversibility they are expect...
Thermal characterization, combustion and kinetics of different origin crude oils
Gundogar, Asli S.; Kök, Mustafa Verşan (2014-05-01)
In this research, the combustion behavior of six Turkish crude oils (light and medium type) was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) methods under atmospheric air in the absence of rock matrix. Two main reaction intervals were observed on all thermograms known as low temperature oxidation (LTO) and high temperature oxidation (HTO) regions. The resulting curves showed that the mass loss under combustion is accompanied by exothermic ...
Citation Formats
O. Polat, “Flame retardant and water-dispersed polyurethane paints,” Middle East Technical University, 2000.