Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain

Bagherifam, Shahla
Kışkan, Barış
Aydogan, Binnur
Yagci, Yusuf
Hacaloğlu, Jale
In this study investigation of thermal characteristics of polysiloxane and polyetherester containing benzoxazine moieties in the main chain was performed via pyrolysis mass spectrometry. Pyrolysis mass spectrometry analyses revealed that the thermal stability and the extent of cross-linking enhanced when the benzoxazine moieties were separated by thermally more stable units such as siloxanes. However, when the siloxane chain units were long, possibility of polybenzoxazine growth decreased significantly and benzoxazine moieties were evolved in the temperature range where polysiloxane degradation took place. (C) 2010 Elsevier B.V. All rights reserved. Keywords
Journal of Analytical and Applied Pyrolysis


Thermal degradation characteristics of polysulfones with benzoxazine end groups
Orhan, Tugba; Ates, Sahin; Hacaloğlu, Jale; Yagci, Yusuf (2012-01-01)
Thermal degradation behaviors of phenol and benzoxazine end-capped polysulfone macromonomers (PSU-OH and PSU-P-a) and pre-cured PSU-P-a in the absence and presence of aniline and phenol based benzoxazine monomer (P-a) were investigated via pyrolysis mass spectrometry. A significant increase in thermal stability of both polysulfone and polybenzoxazine chains upon polymerization of benzoxazine end groups was determined compared to phenol-ended polysulfones and aniline based monofunctional polybenzoxazine. The...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to co nanoparticles
Elmaci, Ayşegül; Hacaloğlu, Jale; Kayran, Ceyhan; Sakellariou, Georgios; Hadjichristidis, Nikos (2009-11-01)
Direct pyrolysis mass spectrometry analyses of polystyrene-block-poly(2-vinylpyridne), PS-b-P2VP, indicated that the thermal degradation of each component occurred independently through the decomposition pathways proposed for the corresponding homopolymers; depolymerization for PS and depolymerization and loss of protonated oligomers for P2VP by a more complex degradation mechanism. On the other hand, upon coordination to cobalt nanoparticles, thermal decomposition of the P2VP blocks was initiated by loss o...
Citation Formats
S. Bagherifam, B. Kışkan, B. Aydogan, Y. Yagci, and J. Hacaloğlu, “Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain,” Journal of Analytical and Applied Pyrolysis, pp. 155–163, 2011, Accessed: 00, 2020. [Online]. Available: