Ultrathin Si solar cell with nanostructured light trapping by metal assisted etching

2018-06-15
Hadibrata, Wisnu
Es, Fırat
Yerci, Selçuk
Turan, Raşit
We report an 8 mu m-thick silicon solar cell with an efficiency of 9.60%. Nanostructured silicon surface formed via metal assisted etching shows a broadband reflection below 10%. Despite the excellent optical performance, a moderate short-circuit current (J(SC)) of 25.44 mA/cm(2) was collected. Relatively low external quantum efficiency (EQE) at short wavelengths was associated with carrier recombination at the enhanced surface and by the Auger process. Moreover, parasitic absorption at the back contact is the main factor resulting a relatively low EQE in long wavelength region of the spectrum. Our optical simulations show that planarization of the rear Si surface and insertion of a low refractive index dielectric spacer between Si and the rear metal can significantly reduce the parasitic absorption in the metal, resulting in J(SC) values over 35 mA/cm(2).
SOLAR ENERGY MATERIALS AND SOLAR CELLS

Suggestions

Ultrathin Si solar cell with nanostructured light trapping by metal assisted etching
Hadibrata, Wisnu; Es, Fırat; Turan, Raşit; Yerci, Selçuk (null; 2017-12-01)
We report an 8 mu m-thick silicon solar cell with an efficiency of 9.60%. Nanostructured silicon surface formed via metal assisted etching shows a broadband reflection below 10%. Despite the excellent optical performance, a moderate short-circuit current (J(SC)) of 25.44 mA/cm(2) was collected. Relatively low external quantum efficiency (EQE) at short wavelengths was associated with carrier recombination at the enhanced surface and by the Auger process. Moreover, parasitic absorption at the back contact is ...
Contact resistivity analysis of different passivation layers via transmission line method measurements
Kökbudak, Gamze; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2017)
Crystalline silicon (c-Si) homojunction solar cells constitute over 90% of the current photovoltaic market. Although the standard solar cells are cost effective and easy to process, their efficiency potential is unfortunately limited. Currently, more innovative cell concepts appeared with their high efficiency potential coupled with low costs. Since the recombination at surfaces and under metal contacts is one of the major obstacles against high conversion efficiencies, surface passivation has primary impor...
Three dimensional crystalline silicon solar cells
Baytemir, Gülsen; Turan, Raşit; Department of Physics (2018)
Three-dimensional crystalline silicon solar cells have been attracting attention with its remarkable electrical and optical performance. In this geometry, nano/micropillars allow minority carrier collection in the radial direction and shorten the path length of the photogenerated carriers. Furthermore, with appropriate geometry of the pillars the solar cell efficiency is enhanced due to the reduced surface reflectance and increased light harvesting. Throughout this study, metal assisted etching (MAE), a top...
Surface modification of multi-crystalline silicon in photovoltaic cell by laser texturing
Radfar, Behrad; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Surface of crystalline silicon solar cell plays an important role in its performance. It affects the optical properties which can be determined by surface’ reflectance. To minimize the reflection from the flat surface, thus, improve light trapping, the crystalline silicon wafers must be textured. Through the texturing process, roughness is introduced at the surface, so the incident light has a larger probability of being absorbed into the solar cell. Monocrystalline silicon solar cells can typically be text...
Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells
Soltanpoor, Wiria; Dreessen, Chris; Şahiner, Mehmet Cem; Susic, Isidora; Afshord, Amir Zarean; Chirvony, Vladimir S.; Boix, Pablo P.; Günbaş, Emrullah Görkem; Yerci, Selçuk; Bolink, Henlk J. (2020-08-01)
The recent sky-rocketing performance of perovskite solar cells has triggered a strong interest in further upgrading the fabrication techniques to meet the scalability requirements of the photovoltaic industry. The integration of vapor deposition into the solution process in a sequential fashion can boost the uniformity and reproducibility of the perovskite solar cells. In addition, mixed-halide perovskites have exhibited outstanding crystallinity and higher stability compared with iodide-only perovskite. An...
Citation Formats
W. Hadibrata, F. Es, S. Yerci, and R. Turan, “Ultrathin Si solar cell with nanostructured light trapping by metal assisted etching,” SOLAR ENERGY MATERIALS AND SOLAR CELLS, pp. 247–252, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30045.