Understanding the Effects of Ion-Exchange in Titanosilicate ETS-10: A Joint Theoretical and Experimental Study

Koc, Mehmet
Galioglu, Sezin
Toffoli, Daniele
Toffoli, Hande
Akata Kurç, Burcu
Density functional theory (DFT) calculations within the gradient-corrected approximation (GGA) were carried out on two models of Engelhard titanosilicate (ETS-10) with the aim to elucidate the effect of ion exchange on the structural and electronic properties of the TiOTi quantum wire. The partial and full exchange of Na+ cations with alkaline, earth-alkaline, and transition metal ions have been investigated. The theoretical results have been complemented by experimental X-ray diffraction (XRD) and Raman data in the region of the TiOTi stretching of the wire. Overall, the experimental data support the theoretical findings where substitution of Na+ with K+, Ag+, and Ca2+ cause only minor structural changes in the wire while the inclusion of Zn2+, Ru3+, and Au3+ cause its partial or entire disruption.


Modelling and experimental study of titanosilicate ets-10 : application for solar cells
Koç, Mehmet; Akata Kurç, Burcu; Toffoli, Hande; Department of Micro and Nanotechnology (2013)
Density functional theory (DFT) calculations within the gradient-corrected approximation (GGA) have been carried out on three models of ETS-10 with the aim to elucidate the effect of ion exchange on the structural, electronic and vibrational properties of the Ti-O-Ti quantum wire. Our data are reveal the presence of two inequivalent Ti-O bonds along the chain in the ETS-10 sodium form, in agreement with past theoretical and experimental studies. The nature and spectral position of the ligand-to-metal charge...
Investigation of structural, electronic, magnetic and lattice dynamical properties for XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds
Surucu, Gokhan; IŞIK, MEHMET; CANDAN, ABDULLAH; Wang, Xiaotian; Güllü, Hasan Hüseyin (Elsevier BV, 2020-06-15)
Structural, electronic, magnetic, mechanical and lattice dynamical properties of XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds have been investigated according to density functional theory and generalized gradient approximation. Among alpha, beta and gamma structural phases, gamma-phase structure has been found as the most stability characteristics depending on the calculated formation enthalpies, energy-volume dependencies and Cauchy pressures. Energy-volume plots of possible magnetic orders of gamma-phase ...
Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study
Sami, Selim; Yıldırım, Erol; Yurtsever, Mine; Yurtsever, Ersin; Yilgor, Emel; Yilgor, Iskender; Wilkes, Garth L. (Elsevier BV, 2014-09-02)
Quantum mechanical calculations (QMC) and dissipative particle dynamics (DPD) siniulations were utilized to understand the nature of the short and long-range hydrogen bonding and its influence on the microphase morphology in segmented polyurethanes and segmented polyureas prepared without chain extenders through the stoichiometric reactions of hydroxy or amine terminated poly(tetramethylene oxide) (PTMO-1000) with 1,4-phenylene diisocyanate (PPDI) and 1,3-phenylene diisocyanate (MPDI). The possibility of lo...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Investigation of Metal and Non-Metal Doped Dimer and Trimer C-60 Fullerene Chains as Prospective Spin Cluster Qubits
Polad, S.; Erkoç, Şakir (American Scientific Publishers, 2011-04-01)
We have calculated the optimized geometries, electronic structures and spin distributions of metal and non-metal elements Li, Na, N and P doped C60 fullerene dimers and trimers with different spin multiplicities using hybrid density functional theory (DFT) at the B3LYP/6-31G level of theory. Natural population analysis and Mulliken population analysis show that non-metal elements (N, P) inside the C60 fullerene dimers and trimers are well isolated and preserve their electronic structures while charge transf...
Citation Formats
M. Koc, S. Galioglu, D. Toffoli, H. Toffoli, and B. Akata Kurç, “Understanding the Effects of Ion-Exchange in Titanosilicate ETS-10: A Joint Theoretical and Experimental Study,” JOURNAL OF PHYSICAL CHEMISTRY C, pp. 27281–27291, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30071.