Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New Catalytic Materials for the Direct Epoxidation of Propylene by Oxygen: Application of High-Throughput Pulsed Laser Ablation
Date
2010-02-01
Author
Kahn, Michael
Seubsai, Anusorn
Önal, Işık
Senkan, Selim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
146
views
0
downloads
Cite This
New catalytic materials were prepared by depositing nanoparticles of 35 different metals as well as their select binary combinations on Al2O3, CeO2, SiO2, TiO2, and ZrO2 supports. Nanoparticles were synthesized by high-throughput pulsed laser ablation (PLA). Catalytic materials were then screened for their selectivities towards the synthesis propylene oxide (PO) from propylene and oxygen using array channel microreactors at 1 atm and 300, 333, and 367 A degrees C. A gas hourly space velocity (GHSV) of 20,000 h(-1) was used at the feed gas composition of 20% O-2, 20% C3H6 and the balance He. Initial screening experiments resulted in the discovery of SiO2 supported Cr, Mn, Cu, Ru, Pd, Ag, Sn, and Ir as the most promising leads for PO synthesis. Subsequent experiments pointed to bimetallic Cu-on-Mn/SiO2, for which the PO yields increased several fold over single metal catalysts. For multimetallic materials, the sequence of deposition of the active metals was shown to have a significant effect on the resulting catalytic activity and selectivity.
Subject Keywords
Partial oxidation
,
Nanoparticle synthesis
,
Multimetallic catalysis
URI
https://hdl.handle.net/11511/30442
Journal
TOPICS IN CATALYSIS
DOI
https://doi.org/10.1007/s11244-009-9430-y
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
High Throughput Synthesis and Screening of New Catalytic Materials for the Direct Epoxidation of Propylene
Kahn, Michael; Seubsai, Anusorn; Önal, Işık; Senkan, Selim (2010-01-01)
Nanoparticles of 35 individual metals as well as their binary combinations were synthesized using High Throughput pulsed laser ablation (PLA), and collected on Al2O3, CeO2, SiO2, TiO2, and ZrO2 pellets. These materials were then screened for their catalytic activities and selectivities for the partial oxidation of propylene, in particular for propylene oxide (PO), using array channel microreactors. Reaction conditions were the following: 1 atm pressure, gas hourly space velocity (GHSV) of 20,000 h(-1), temp...
Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol
Sen, Fatih; Goekagac, Guelsuen (2008-05-01)
PtRu/C catalysts, which have different atomic percent ratios of Pt and Ru (Pt/Ru = 0.8 (catalyst A), 2.1 (catalyst B), and 3.5 (catalyst C)), were prepared using PtCl4 and RuCl3 as starting materials and tert-octanethiol as a surfactant for the first time. Each was characterized by X-ray diffraction, transmission electron microscopy, energy dispersive analysis, X-ray photoelectron spectroscopy, cyclic voltammetry, and elemental analysis, and their activities were determined toward the methanol oxidation rea...
Ni and cu incorporated mesoporous nanocomposite catalytic materials
Nalbant, Asli; Doğu, Timur; Balci, Suna (2008-02-01)
Nickel and copper incorporated MCM-41-like mesoporous nanocomposite materials prepared by the direct hydrothermal synthesis and the impregnation procedures showed highly attractive pore structure and surface area results for catalytic applications. The XRD patterns showed that characteristic MCM-41 structure was preserved for the materials synthesized following an impregnation procedure before the calcination step. The surface area of the Cu impregnated material with a quite high Cu/Si atomic ratio (0.19) w...
A versatile bio-inspired material platform for catalytic applications: micron-sized "buckyball-shaped" TiO2 structures
Altunöz Erdoğan, Deniz; Solouki, Touradj; Ozensoy, Emrah (2015-01-01)
A simple sol-gel synthesis method is presented for the production of micron-sized buckyball-like TiO2 architectures using naturally occurring Lycopodium clavatum (LC) spores as biotemplates. We demonstrate that by simply altering the calcination temperature and titanium(IV) isopropoxide : ethanol volume ratio, the crystal structure and surface composition of the buckyball-like TiO2 overlayer can be readily fine-tuned. After the removal of the biological scaffold, the unique surface morphology and pore struc...
New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward green polymeric materials
Durmus, Asuman; Günbaş, Emrullah Görkem; Toppare, Levent Kamil (American Chemical Society (ACS), 2007-12-11)
Two new highly stable electrochromic polymers, poly(5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl)quinoxaline) (PDETQ) and poly (5,8-bis(2,3 -dihydrothieno[3,4-b][ 1,4]dioxin-5yl)quinoxaline) (PDEQ) were synthesized, and their potential use as neutral state green polymeric materials was investigated. Spectroelectrochemistry showed that both polymers reveal two distinct absorption bands as expected for this type of donor-acceptor polymer, at 410 and 660 nm for PDEQ and 405 and 780 nm...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kahn, A. Seubsai, I. Önal, and S. Senkan, “New Catalytic Materials for the Direct Epoxidation of Propylene by Oxygen: Application of High-Throughput Pulsed Laser Ablation,”
TOPICS IN CATALYSIS
, pp. 86–91, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30442.