Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TURBULENT BOUNDARY-LAYER AND THE EFFECT OF CRITICAL ROUGHNESS REYNOLDS-NUMBERS ON THE RECOVERY LENGTH BEHIND AN ISOLATED SPHERICAL ROUGHNESS ELEMENT UNDER VARIABLE PRESSURE-GRADIENT
Date
1990-03-01
Author
Albayrak, Kahraman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
The transition characteristics and the boundary layer development behind an isolated spherical roughness element were investigated in an open-circuit, suction-type wind tunnel. The experiments were performed upon a smooth aluminiuim flat plate placed in the test section of the tunnel. The desired pressure gradient was obtained by means a false roof placed in the test section. In this article, emphasis is given to the recovery length of the turbulent boundary layer behind an isolated spherical roughness element under zero, favorable, and adverse pressure gradienst. The recovery length of the turbulent boundary layer is correlated with the critical roughness Reynolds number REkce and Rekcs.
Subject Keywords
Flow instability
,
Flow transition
,
Incompressible flow
,
Turbulent flow
URI
https://hdl.handle.net/11511/30477
Journal
EXPERIMENTAL THERMAL AND FLUID SCIENCE
DOI
https://doi.org/10.1016/0894-1777(90)90086-m
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
High Speed Couette—Poiseuille Flow Stability in Reverse Flow Conditions
Ebrinç, Ali Aslan; Özgen, Serkan; Dursunkaya, Zafer (2006-08-21)
The linear stability of reverse high speed-viscous plane Couette – Poiseuille flow is investigated numerically. The conservation equations along with Sutherland’s viscosity law are studied using a second order finite difference scheme. Basic velocity and temperature distributions are perturbed by a small amplitude normal-mode disturbance. Small amplitude disturbance equations are solved numerically using a global method to find all the eigenvalues at finite Reynolds numbers. The results indicate that instab...
Wall functions for boundary roughness prediction in uniform channel flows
Aydın, İsmail (null; 2017-08-18)
Boundary roughness is an important hydraulic parameter in describing dynamics of free surface flows. There is no direct method to estimate the possible boundary resistance in natural environment. Available empirical formulations are based on the particle
Investigation of unsteady wake-separated boundary layer interaction using particle-image-velocimetry
Uzol, Oğuz; Cranstone, Alex; Hodson, Howard (2007-05-17)
The current paper presents an experimental investigation of the interaction between unsteady wakes and the separated boundary layer on the suction side of an ultra-high-lift low-pressure turbine airfoil. Two-dimensional Particle Image Velocimetry (PIV) measurements of the unsteady boundary layer over the T106C LP turbine profile were performed in a low speed linear cascade facility, at selected phases of passing wakes. The wakes are created by moving cylindrical bars across the inlet of the test section. V...
Mol solution for transient turbulent flow in a heated pipe
Uygur, AB; Tarhan, T; Selçuk, Nevin (2005-08-01)
A computational fluid dynamics (CFD) code, based on direct numerical simulation (DNS) and method of lines (MOL) approach previously developed for the prediction of transient turbulent, incompressible, confined non-isothermal flows with constant wall temperature was applied to the prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. The code was parallelized in order to meet the high grid resolutions required by DNS of turbulent fl...
Ensemble Modeling of Hydrologic and Hydraulic Processes at One Shot: Application to Kinematic Open-Channel Flow under Uncertain Channel Properties and Uncertain Lateral Flow Conditions by the Stochastic Method of Characteristics
Ercan, Ali; Kavvas, M. L. (2012-03-01)
A stochastic kinematic wave model for open channel flow is developed under uncertain channel properties and uncertain lateral flow conditions. Applying a known methodology, the Fokker-Planck equation (FPE) of the kinematic open-channel flow process under uncertain channel properties and uncertain lateral flow conditions is derived using the method of characteristics. Because every stochastic partial differential equation has a one-to-one relationship with a nonlocal Lagrangian-Eulerian Fokker-Planck equatio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Albayrak, “TURBULENT BOUNDARY-LAYER AND THE EFFECT OF CRITICAL ROUGHNESS REYNOLDS-NUMBERS ON THE RECOVERY LENGTH BEHIND AN ISOLATED SPHERICAL ROUGHNESS ELEMENT UNDER VARIABLE PRESSURE-GRADIENT,”
EXPERIMENTAL THERMAL AND FLUID SCIENCE
, pp. 184–190, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30477.