Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor
Date
2008-05-01
Author
Gogebakan, Zuhal
Selçuk, Nevin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
52
views
0
downloads
Cite This
In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO2 emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO? emissions considerably. Cofiring of hazelnut shell reduces NO and N2O emissions; on the contrary, cofiring cotton residue results in higher NO and NO emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems.
Subject Keywords
Nitrogen-oxides
,
Biomass
,
Coal
,
Cocombustion
,
Technology
,
Emission
,
Fuels
URI
https://hdl.handle.net/11511/30678
Journal
ENERGY & FUELS
DOI
https://doi.org/10.1021/ef700650x
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Comparison of single particle combustion behaviours of raw and torrefied biomass with Turkish lignites
Magalhaes, Duarte; Panahi, Aidin; Kazanç Özerinç, Feyza; Levendis, Yiannis A. (Elsevier BV, 2019-04-01)
This study investigated the combustion behaviour of single pulverized biomass and lignite coal particles under high temperature-high heating rate conditions. Selected fuels included three important agricultural residues in Turkey (olive residue, almond shell, and hazelnut shell), and two lignite coals from the regions of Tuncbilek and Soma in Turkey. Biomass fuels were either raw or torrefied at 275 degrees C for 30 min in nitrogen. The biomass fuels were sieved to a size cut of 212-300 mu m, and the coals ...
Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Influence of coal briquette size on the combustion kinetics
Altun, Naci Emre; Bagci, AS (Elsevier BV, 2004-08-15)
In this study, the effects of one of the most important parameters in coal briquetting process, the briquette size, on the combustion behaviour of coal briquettes were determined from the view of combustion kinetics, i.e. their liability to ignite and combust. Effect of size on the combustion kinetics was treated by two different approaches. The first one consists of combustion kinetics experiments with briquettes of increasing sizes, thus of expanding volumes. In the second phase, briquette dimensions were...
NANOSTRUCTURE OF SOOT COLLECTED FROM ETHANOL DROPLET FLAMES IN MICROGRAVITY
Park, Seul-Hyun; Choi, Mun Young; Yozgatlıgil, Ahmet (Informa UK Limited, 2009-01-01)
The nanostructure of soot particles collected from spherically symmetric ethanol droplet flames were analyzed using a high resolution transmission electron microscopy (HRTEM). Nanostructure properties, including fringe length and curvature of carbon lamellae, were measured for soot particles collected in various inert environments. The sampling experiments were performed in the reduced gravity environments produced in the NASA 2.2 sec Droptower at the Glenn Research Center in Cleveland, Ohio. Microgravity d...
Thermal Analysis of Crude oil lignite mixtures by Differential Scanning Calorimetry
Kök, Mustafa Verşan (Elsevier BV, 1994-04-01)
Thermal characterization of lignite, crude oils and their 10 and 20% mixtures were investigated by differential scanning calorimetry (d.s.c.). The calorific value of the lignite increased in mixtures depending on the crude oil type. In pyrolysis runs, temperature ranges where distillation and visbreaking occur were identified for the crude oils studied. The effect of heating rate was also studied, and higher reaction temperatures and higher heat flow rates were observed at d.s.c. peak thermograms with incre...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Gogebakan and N. Selçuk, “Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor,”
ENERGY & FUELS
, pp. 1620–1627, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30678.