Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Carbon coating of magnesium particles
Date
2017-10-05
Author
Aktekin, Burak
Eyovge, Cavit
Öztürk, Tayfur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
Magnesium when hydrided has low thermal and electrical conductivity and carbon coating would be useful to remedy this for a variety of purposes. In this study, carbon coating was achieved by co-feeding magnesium and methane into a thermal plasma reactor. This yielded carbonaceous material with magnesium particles 5-10 nm in size embedded in graphitic matrix. A further reduction down to 2-3 nm was possible but required reductions in the precursor feed rate. 2 wt% carbon was sufficient to fully protect magnesium particles of approx. 260 nm in size. Light milling, however, disrupts the continuity of graphitic envelop and the particles then react both with oxygen and hydrogen.
Subject Keywords
Activation via milling
,
Protected particles
,
Hydrogen storage
,
Nanoparticles
,
Carbon coating
,
Magnesium
URI
https://hdl.handle.net/11511/30714
Journal
JOURNAL OF ALLOYS AND COMPOUNDS
DOI
https://doi.org/10.1016/j.jallcom.2017.05.241
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Nanomaterial-Enhanced All-Solid Flexible Zinc-Carbon Batteries
Hiralal, Pritesh; Imaizumi, Shinji; Ünalan, Hüsnü Emrah; Matsumoto, Hidetoshi; Minagawa, Mie; Rouvala, Markku; Tanioka, Akihiko; Amaratunga, Gehan A. J. (2010-05-01)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte laye...
Carbon Coating of magnesium via thermal plasma
Aktekin, Burak; Eyövge, Cavit; Öztürk, Tayfur (null; 2018-05-07)
Magnesium is a material of considerable interest for electrochemical as well as thermal energy storage. Carbon coated magnesium or magnesium nanopartciles emebedded in a graphitic matrix could provide solutions to some of the problems currently faced in these application areas. The current study was undertaken to develop Mg-C composites at a variety of length scales. The synthesis was achieved by co-feeding magnesium and methane into an RF thermal plasma reactor. This yielded carbonaceous material with magn...
Development of high temperature creep resistant aluminium based sand cast magnesium alloys
Yalınız, Emrah; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (2018)
The aim of this thesis is to develop alternative sand casting aluminum based magnesium alloys to substitute current sand castable helicopter transmission housing magnesium alloys such as ZE41A and EV31A. AZ91 magnesium alloy has also been preferred for helicopter transmission housing material. However, the lower creep resistance above 120 oC due to the presence of -(Mg17Al12) phase in the microstructure and showing varying mechanical properties in different section thicknesses limit the usage of AZ91 in th...
Induction thermal plasma synthesis of Mg2Ni nanoparticles
Aktekin, Burak; ÇAKMAK, GÜLHAN; Öztürk, Tayfur (2014-06-15)
A study was carried out into possibility of thermal plasma synthesis of Mg2Ni nanoparticles. Both prealloyed powders and elemental powders were used as precursors in an inductively coupled thermal plasma incorporating two injection probes located axially in the reactor one from the top and the other from the bottom. The study has shown that the use of prealloyed Mg2Ni as precursor leads to its disintegration in the plasma condensing into separate phases and therefore was not suitable for the synthesis of Mg...
ELECTROLESS DEPOSITION OF OXIDATION RESISTANT HIGH TEMPERATURE COATINGS IN MOLTEN SALT
Ömür, İshak Emre; Karakaya, İshak; Erdoğan, Metehan; Department of Metallurgical and Materials Engineering (2021-9-10)
Molybdenum and molybdenum alloy (TZM) can be protected against oxygen in hightemperature environment by developing silicide coating on their surface without damaging their mechanical properties. In this study, molybdenum di-silicide was coated on pure molybdenum and its alloy (TZM) surfaces using a molten salt method. NaCl-KCl-NaF eutectic composition was used as salt mixture, and Na2SiF6 and silicon powder were added to the system as silicon source. X-ray diffraction (XRD), Inductively Coupled Plasma ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Aktekin, C. Eyovge, and T. Öztürk, “Carbon coating of magnesium particles,”
JOURNAL OF ALLOYS AND COMPOUNDS
, pp. 17–21, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30714.