Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Date
2019-11-01
Author
Uz-Logoglu, Eda
Salor, Ozgul
Ermiş, Muammer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
266
views
0
downloads
Cite This
In this paper, a method based on the multiple synchronous reference frame analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and all interharmonics 5 Hz apart. To extract the direct current components of the transformed d-q quantities, a low-pass filter is employed. In order to keep the delay of the filter at zero frequency less than a few ms, Kalman estimation technique has been used. Back transformation is then applied for each harmonic and interharmonic component to obtain their positive- and negative-sequences of the associated harmonic and interharmonic in the actual line current waveforms. Parallel computing technique has been applied for the real-time detection of both the phase and the amplitude of all harmonics and interharmonics. This is achieved on NVDIA Jetson TX1 graphics processing unit framework for a sample industrial plant. The developed system is shown to be useful for fast and accurate generation of reference signals for the controllers of the advanced technology power conditioning systems which successfully compensates interharmonics, harmonics, and flicker of the rapidly fluctuating nonlinear industrial loads.
Subject Keywords
Power quality (PQ)
,
Multiple synchronous reference frame (MSRF)
,
Kalman filtering
,
Interharmonics
,
Harmonics
,
Graphical processing unit (GPU)
,
Electric arc furnace (EAF)
URI
https://hdl.handle.net/11511/30887
Journal
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
DOI
https://doi.org/10.1109/tia.2019.2928499
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2017-10-05)
In this paper, a method based on the multiple synchronous reference frame (MSRF) analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace (AC EAF) installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and a...
Online Characterization of Interharmonics and Harmonics of AC Electric Arc Furnaces by Multiple Synchronous Reference Frame Analysis
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2016-05-01)
In this paper, a multiple synchronous reference frame (MSRF) analysis framework is developed to determine the positive-and negative-sequence components of all interharmonic and harmonic currents produced by alternating current electric arc furnace (AC EAF) installations, which can be considered as balanced but asymmetrical three-phase, three-wire loads on the power system. The aim of developing the MSRF analysis framework is twofold; deep understanding of the EAF characteristics, and fast and accurate gener...
Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents
Balouji, Ebrahim; SALOR DURNA, ÖZGÜL; Ermiş, Muammer (2017-10-01)
In this research work, a multiple synchronous reference frame (MSRF) based analysis method used together with exponential smoothing (ES) to accurately obtain the time-varying harmonics and interharmonics of electric arc furnace (EAF) currents, is proposed. The proposed method has been implemented on NVIDIA Geforce GTX 960 graphics card for the parallel processing of all harmonics and interharmonics so that real-time processing of the EAF currents obtained from a measurement point of the electricity transmis...
Exponential Smoothing of Multiple Reference Frame Components With GPUs for Real-Time Detection of Time-Varying Harmonics and Interharmonics of EAF Currents
Balouji, Ebrahim; Salor, Ozgul; Ermiş, Muammer (2018-11-01)
In this research work, a multiple synchronous reference frame (MSRF)-based analysis method, used together with exponential smoothing (ES) to accurately obtain the time-varying harmonics and interharmonics of electric arc furnace (EAF) currents, is proposed. The proposed method has been implemented on NVIDIA Geforce GTX 960 graphics card for the parallel processing of all harmonics and interharmonics so that real-time processing of the EAF currents obtained from a measurement point of the electricity transmi...
Online characterization of interharmonics and harmonics of AC electric arc furnaces by multiple synchronous reference frame analysis
Uz Loğoğlu, Eda; Salor, Özgül; Ermiş, Muammer (2015-10-18)
In this paper, a multiple synchronous reference frame (MSRF) analysis framework is developed to determine the positive- and negative -sequence components of all interharmonic and harmonic currents produced by alternating current electric arc furnace (AC EAF) installations, which can be considered as balanced but asymmetrical three-phase, three -wire loads on the power system. The aim of developing the MSRF analysis framework is two -fold; deep understanding of the EAF characteristics, and fast and accurate ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Uz-Logoglu, O. Salor, and M. Ermiş, “Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework,”
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
, pp. 6613–6623, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30887.