Strongly stable semi-implicit Runge Kutta methods.

1984
Yargucu, Melek

Suggestions

Strongly prime one-sided ideals and module properties
Kuzucuoğlu, Feride; Kaya, Arif; Department of Mathematics (1995)
Strongly regular graphs arising from non-weakly regular bent functions
Özbudak, Ferruh (Springer Science and Business Media LLC, 2019-11-01)
In this paper, we study two special subsets of a finite field of odd characteristics associated with non-weakly regular bent functions. We show that those subsets associated to non-weakly regular even bent functions in the GMMF class (see cesmelioglu et al. Finite Fields Appl. 24, 105-117 2013) are never partial difference sets (PDSs), and are PDSs if and only if they are trivial subsets. Moreover, we analyze the two known sporadic examples of non-weakly regular ternary bent functions given in Helleseth and...
Strongly residually finite fc-groups
Betin, Cansu; Kuzucuoğlu, Mahmut; Department of Mathematics (2002)
Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks
Akhmet, Marat; Nugayeva, Zakhira (2020-10-01)
In this paper, unpredictable oscillations in Hopfield-type neural networks is under investigation. The motion strongly relates to Poincare chaos. Thus, the importance of the dynamics is indisputable for those problems of artificial intelligence, brain activity and robotics, which rely on chaos. Sufficient conditions for the existence and uniqueness of exponentially stable unpredictable solutions are determined. The oscillations continue the line of periodic and almost periodic motions, which already are ver...
Strictly singular operators and isomorphisms of Cartesian products of power series spaces
Djakov, PB; Onal, S; Terzioglu, T; Yurdakul, Murat Hayrettin (1998-01-02)
V. P. Zahariuta, in 1973, used the theory of Fredholm operators to develop a method to classify Cartesian products of locally convex spaces. In this work we modify his method to study the isomorphic classification of Cartesian products of the kind E-0(p)(a) x E-infinity(q) (b) where 1 less than or equal to p, q < infinity, p not equal q, a = (a(n))(n=1)(infinity) and b = (b(n))(n=1)(infinity) are sequences of positive numbers and E-0(p)(a), E(infinity)q(b) are respectively l(p)-finite and l(q)-infinite type...
Citation Formats
M. Yargucu, “Strongly stable semi-implicit Runge Kutta methods.,” Middle East Technical University, 1984.