Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nitrogen cycling in the offshore waters of the Black Sea
Date
2007-09-01
Author
McCarthy, James J.
Yılmaz, Aysun
Coban-Yildiz, Yesim
Nevins, John L.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
263
views
0
downloads
Cite This
The purpose of this study was to measure directly the rates of several of the processes responsible for the production and utilization of nitrogenous nutrients, and to use these rates and other data to generate an annual nitrogen budget for the Black Sea. Water column samples and experimentation with (15)N labeled nutrients in the offshore waters of the Black Sea reveal strong seasonal cycles in the utilization of different forms of N, the regeneration of NH(4)(+) and the production of NO(2)(-) in and below the surface mixed layer. There was no opportunity to sample during winter, but historical data and contemporary satellite ocean color data for the study period allow us to make extrapolations to a full annual cycle for the Black Sea N budget. The processes supplying N to, and the microbial processes within, the Cold Intermediate Layer (CIL), which lies below the surface mixed layer, figure prominently in determining the sources of N available for primary production. The uptake of NO(3)(-) by phytoplankton in this system was less sensitive to NH4+ concentration than has been observed in many oceanic waters. The seasonal shift in nutrient uptake kinetics was consistent with seasonality of nutrient availability. Rates of in situ NO(2)(-) production (and inferred nitrification) for the offshore waters was 1.6 x 10(11) mol y(-1), three times the published estimates for NO(3)(-) supplied from the NW Shelf (NWS) region, which originates from riverine discharges. Measured rates of nitrification in the CIL are about 60% of phytoplankton NO(3)(-) + NO(2)(-) uptake (2.8 x 10(11) mol y(-1)). Remineralization is about 25% of the NH(4)(+) phytoplankton utilization rate (3.8 x 10(11) mol y(-1)). Within the CIL NH(4)(+) is utilized in NO(2)(-) production (and implied nitrification) at a rate that is similar to the rate of NH4+ remineralization from organic matter. By preserving the rates that are determined with the most confidence, and making adjustments to the rates least confidently determined, nitrification (+60%, which is within the range of published values) and ammonium remineralization (+13%), the Black Sea N budget can be brought into balance. A balanced annual budget for N cycling in the offshore waters of the Black Sea estimates a particle export rate from the oxygenated surface layer to the deep anoxic waters equivalent to 8% of the total N production. We extrapolate an annual mean f-ratio of 0.38 by the conventional formulation (NO(3)(-) uptake: total N uptake). However, the balanced N budget permits a direct comparison of allochthonous sources of N to total N production in this unusual aquatic ecosystem, resulting in an f-ratio of 0.17, which is reconciled with particulate export when the budgeted losses due to anammox and denitrification are included. The NO(3)(-) content of the CIL is sensitive to year-to-year fluctuations in the source of N from the NWS. These processes plus the intensity of winter mixing, which supplies new N for the fall-winter bloom, are influenced by climate. Oscillations in winter temperature over the past few decades allow inference as to how the Black Sea N budget may be affected by future warmer conditions for this region. (c) 2007 Published by Elsevier Ltd.
Subject Keywords
Phytoplankton
,
Nitrogen uptake
,
New production
,
Nitrogen cycling
,
Remineralization
,
Nitrogen export
,
Danube
,
Black Sea
URI
https://hdl.handle.net/11511/31266
Journal
ESTUARINE COASTAL AND SHELF SCIENCE
DOI
https://doi.org/10.1016/j.ecss.2007.05.005
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust
Mace, KA; Kubilay, N; Duce, RA (2003-05-31)
From March through early May of 2000, rain and bulk aerosol samples were collected at a coastal site on the eastern Mediterranean Sea at Erdemli, Turkey, and analyzed for nitrogen (N) species, including nitrate (NO3-), nitrite (NO2-), ammonium (NH4+), water-soluble organic N, urea, and dissolved free amino acids. Other ions were also analyzed, including Ca2+, Mg2+, K+, Na+, Cl-, and SO42-. Water-soluble organic N was found to contribute similar to17% and similar to26% of the total water-soluble N in rain an...
HYPERTHERMOPHILIC HYDROGEN PRODUCTION BY GEOGLOBUS ACETIVORANS IN MICROBIAL ELECTROLYSIS CELLS
Kaş, Aykut; Yılmazel Tokel, Yasemin Dilşad; Department of Environmental Engineering (2021-9-10)
Utilization of hyperthermophilic microorganisms was suggested to improve reaction rates and insoluble pollutant degradation and minimize the risk of contamination in bioelectrochemical systems (BESs). So far only a small group of hyperthermophilic microorganisms were identified, which show the ability to donate electrons to solid electrodes in BESs and here we present a new culture that fits to this description. The iron reducing archaeal culture Geoglobus acetivorans, originally isolated from a hydrotherma...
Extraction of nickel from lateritic ores
Büyükakıncı, Ergin; Topkaya, Yavuz Ali; Department of Metallurgical and Materials Engineering (2008)
The aim of this study was to extract nickel and cobalt from the lateritic nickel ores of Gördes region by hydrometallurgical methods under the optimum conditions. Limonitic and nontronitic types of Gördes lateritic nickel ores were used during experiments. Agitative and column leaching experiments at atmospheric pressure were conducted with various parameters; these were duration, temperature and initial sulfuric acid concentration of leach solution. It was shown that in agitative leaching, under the optimu...
Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors
Alkaya, Emrah; Demirer, Göksel Niyazi (2011-03-01)
In this study, biochemical methane potential (BMP) assay was conducted to investigate the effect of waste mixing and F/M ratio on the co-digestion of wastewater and beet-pulp, in addition to the digestion of the wastes separately. In the studied F/M range (0.51–2.56 g COD/g VSS), observed treatment efficiencies (63.7–87.3% COD removal and 69.6–89.3% VS reduction) were indications of high biodegradability for both wastewater and beet-pulp, which decreased with increasing F/M. It was evident that the extent o...
Accuracy analyses of numeric weather prediction-based stratiform and convective precipitation shortterm forecasts over Turkey
Aydın, Beril; Yücel, İsmail; Yılmaz, Mustafa Tuğrul; Department of Civil Engineering (2023-1)
This study was carried out to determine whether convective and stratiform (large-scale) precipitation datasets obtained from 5 model forecast-based products would be an adequate alternative for regions where station-based observation networks are sparse. Verification of precipitation types (convective or stratified) from numerical weather forecast (NWP) models (ALARO, CFS, ECMWF HRES, GFS, WRF) is done using station-based observations. Statistical assessments between these precipitation types in different t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. J. McCarthy, A. Yılmaz, Y. Coban-Yildiz, and J. L. Nevins, “Nitrogen cycling in the offshore waters of the Black Sea,”
ESTUARINE COASTAL AND SHELF SCIENCE
, pp. 493–514, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31266.