A penalty finite element method for the solution of Navier-Stokes equations

Download
1987
Salim, Tariq Omar

Suggestions

A finite element variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Society for Industrial & Applied Mathematics (SIAM), 2005-01-01)
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky ...
A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems
Türk, Önder; Codina, Ramon (2016-10-01)
In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two field (displacement pressure) and the three-field (stress displacement pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a stand...
A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems
Boffi, Daniele; Codina, Ramon; Türk, Önder (null; 2016-08-06)
A finite element method for the solution of three-dimensional electromagnetic boundary value problems with real and artificial boundary conditions
Pekel, Ümit; Kuzuoğlu, Mustafa; Department of Electrical Engineering (1987)
A two-grid stabilization method for solving the steady-state Navier-Stokes equations
Kaya Merdan, Songül (Wiley, 2006-05-01)
We formulate a subgrid eddy viscosity method for solving the steady-state incompressible flow problem. The eddy viscosity does not act on the large flow structures. Optimal error estimates are obtained for velocity and pressure. The numerical illustrations agree completely with the theoretical results. (C) 2005 Wiley Periodicals, Inc.
Citation Formats
T. O. Salim, “A penalty finite element method for the solution of Navier-Stokes equations,” Middle East Technical University, 1987.