Direct Methane Oxidation to Methanol by N2O on Fe- and Co-ZSM-5 Clusters with and without Water: A Density Functional Theory Study

2010-02-25
Fellah, Mehmet Ferdi
Önal, Işık
Density functional theory (DFT) calculations were carried Out ill a Study of oxidation of methane to methanol by N2O on the Fe- and Co-ZSM-5 clusters. The catalytic cycle steps have been Studied oil model Clusters ((SiH3)(4)AlO4M) (where M = Fe, Co). Calculations indicate very low methanol selectivity Without water and increasing rate of methanol formation with water. These results are in qualitative agreement with the experimental literature. The methanol formation step is also found to be the rate-limiting step, and this result is in agreement with other theoretical work. Co-ZSM-5 cluster has a lower activation barrier when compared to that of Fe-ZSM-5 cluster (49 kcal/mol vs 53 kcal/mol). Activation barrier values decrease to 48 and 39 kcal/mol for Fe- and Co-ZSM-5 Clusters, respectively, in the presence of water molecule adsorbed after the formation of I hydroxy group oil the ZSM-5 surface. The methanol formation step is the most difficult reaction for both Clusters with and without water.
JOURNAL OF PHYSICAL CHEMISTRY C

Suggestions

Oxidation of Benzene to Phenol by N2O on an Fe2+-ZSM-5 Cluster: A Density Functional Theory Study
Fellah, Mehmet Ferdi; van Santen, Rutger A.; Önal, Işık (2009-08-27)
Density functional theory (DFT) calculations were carried out in a study of the oxidation of benzene to phenol by N2O on an Fe2+-ZSM-5 cluster. The catalytic cycle has been studied oil a model [Si6Al2O9H14Fe] cluster. It is found that Fe2+ is preferred over Fe1+ as a site for phenol oxidation. A high desorption value of 126.4 kJ/mol suggests that at low temperature phenol desorption is the rate limiting step on the Fe2+-ZSM-5 cluster. It competes with the N2O decomposition step. The computed activation ener...
Partial oxidation of methane on the SiO2 surface - A quantum chemical study
Ozturk, S; Onal, I; Senkan, S (2000-02-01)
Reaction pathways for methane partial oxidation (MPO) on silica were theoretically investigated using the semiempirical MOPAC-PM3 molecular orbital method. The surface of SiO2 was modeled by a helical Si6O18H12 molecular cluster that also exhibits a strained siloxane bridge defect. First, a bond energy analysis was performed on the silica cluster with isolated 3- and 4-coordinated Si surface atoms. Calculated bond dissociation energies for Si-H, SiO-H, and SI-OH were comparable to H-CH3, H-OH, and O-O. In t...
A density functional theory study of oxidation of benzene to phenol by N2O on Fe- and Co-ZSM-5 clusters
Fellah, Mehmet Ferdi; Önal, Işık (2009-06-01)
Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N2O on relaxed [(SiH3)(4)AlO4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formatio...
Epoxidation of Propylene on a [Ag14O9] Cluster Representing Ag2O (001) Surface: A Density Functional Theory Study
Fellah, Mehmet Ferdi; Önal, Işık (2012-01-01)
Density functional theory calculations were employed to study partial oxidation of propylene on a [Ag14O9] cluster representing Ag2O (001) surface for which positive effect for ethylene oxide formation has been reported in our earlier work at the same level of theory (Fellah et al., Catal Lett 141: 762, 2011). Propylene oxide (PO), propanal, acetone and G-allyl radical formation reaction mechanisms were investigated. P-allyl formation path and two propylene adsorption paths resulting in PO formation are com...
A Density Functional Theory Study of Direct Oxidation of Benzene to Phenol by N2O on a [FeO](1+)-ZSM-5 Cluster
Fellah, Mehmet Ferdi; Önal, Işık; van Santen, Rutger A. (2010-07-29)
Density functional theory calculations were carried out in a study of the oxidation of benzene to phenol by N2O on a model (FeO)(1+)-ZSM-5 cluster: the [(SiH3)(4)AlO4(FeO)] cluster. This cluster models the reactivity of Fe3+ oxidic clusters. Results are to be compared with an earlier study (J. Phys. Chem. C 2009, 113, 15307) on a model Fe2+-ZSM-5 cluster. The true activation energies for the elementary reaction step in which phenol is produced appear to be comparable. The major difference between the two sy...
Citation Formats
M. F. Fellah and I. Önal, “Direct Methane Oxidation to Methanol by N2O on Fe- and Co-ZSM-5 Clusters with and without Water: A Density Functional Theory Study,” JOURNAL OF PHYSICAL CHEMISTRY C, pp. 3042–3051, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31493.