Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties

2014-11-04
Kara, Filiz
AKSOY, EDA AYŞE
YÜKSEKDAĞ, ZEHRANUR
Hasırcı, Nesrin
AKSOY, SERPİL
Surface modification and providing antibacterial properties to the materials or devices are getting great attention especially in the last decades. In this study, polyurethane (PU) films were prepared by synthesizing them in medical purity from toluene diisocyanate and polypropylene ethylene glycol without using any other ingredients and then the film surfaces were modified by covalent immobilization of chitosan (CH) which has antibacterial activity. CH immobilized PU films (PU-CH) were found to be more hydrophilic than control PU films. Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM) analyses showed higher nitrogen contents and rougher surface topography for PU-CH compared to PU films. Modification with CH significantly increased antibacterial activity against Gram positive (Staphylococcus aureus) and Gram negative (Pseudomonas aeruginosa) bacteria. It was observed that the number of bacteria colonies were less about 10(2)-10(5) CFU/mL and number of attached viable bacteria decreased significantly after CH modification of PU films.
CARBOHYDRATE POLYMERS

Suggestions

Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization
Kara, Filiz; AKSOY ALP, EYLEM; YÜKSEKDAĞ, ZEHRANUR; AKSOY, SERPİL; Hasırcı, Nesrin (2015-12-01)
Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh ...
Synthesis of benzotriazole bearing donor acceptor type electroactive monomers towards high optical contrast and fast switching electrochromic materials
Balan, Abidin; Toppare, Levent Kamil; Department of Chemistry (2009)
Synthesis of new electroactive monomers are highly desired since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. EDOT (3,4 ethylenedioxythiophene) and thiophene bearing polymers were also proven to be excellent candidates as electrochromic materials. Benzotriazole can be coupled to EDOT and thiophene to yield materials that can be polymerized to give donor acceptor type polymers. These materials are promising candidates as components in fast s...
Preparation and characterization of biodegradable composite systems as hard tissue supports: bone fillers, bone regeneration membranes and scaffolds
Sezer, Ümran Aydemir; Hasırcı, Nesrin; Department of Biomedical Engineering (2012)
In tissue engineering applications, use of biodegradable and biocompatible materials are essential. As the tissue regenerate itself on the material surface, the material degrades with enzymatic or hydrolytic reactions. After a certain time, natural tissue takes the place of the artificial support. Poly(ε-caprolactone) (PCL) is one of the preferable polymers used in the restoration of the bone defects due to its desirable mechanical properties and biocompatibility. Addition of inorganic calcium phosphate par...
Synthesis and characterization of sta incorporated mesoporous materials as catalysts for polyethylene pyrolysis
Kelebek, Neriman; Sezgi, Naime Aslı; Department of Chemical Engineering (2016)
Pyrolysis of polymers, which is a process for recovery of the waste polymer, has attracted great attention in recent years due to the high amount of plastic waste present in nature.However, degradation rocess requires high amount of external energy to break long chain of chemical bonds in the polymer. For this reason, suitable catalysts with strong acid sites are necessary. High surface area silica structured mesoporous materials with narrow pore size distributions are excellent catalysts for these reaction...
Processing and characterization of carbon nanotube based conductive polymer composites
Yeşil, Sertan; Bayram, Göknur; Department of Chemical Engineering (2010)
The aim of this study was to improve the mechanical and electrical properties of conductive polymer composites. For this purpose, different studies were performed in this dissertation. In order to investigate the effects of the carbon nanotube (CNT) surface treatment on the morphology, electrical and mechanical properties of the composites, poly(ethylene terephthalate) (PET) based conductive polymer composites were prepared by using as-received, purified and modified carbon nanotubes in a twin screw extrude...
Citation Formats
F. Kara, E. A. AKSOY, Z. YÜKSEKDAĞ, N. Hasırcı, and S. AKSOY, “Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties,” CARBOHYDRATE POLYMERS, pp. 39–47, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31502.