Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains
Date
2008-05-01
Author
Nur, Yusuf
Çolak, Demet
Cianga, Ioan
Yagci, Yusuf
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
0
downloads
Cite This
The thermal degradation characteristics of a new macromonomer poly(epsilon-caprolactone) with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene)s with well defined (E-caprolactone), (PPV/PCL) as lateral substituents were investigated via direct pyrolysis mass spectrometry. The unexpectedly high thermal stability of the macromonomer was attributed to intermolecular acetylation of benzaldehyde yielding a hemiacetal and causing a crosslinked structure during the pyrolysis. Increased thermal stability of the PCL chains was detected for all samples. The increase in stability of PCL chains was much more pronounced than was detected for poly(p-phenylene)-graft-poly(epsilon-caprolactone) copolymer (PPP/PCL); the upward temperature shift was about 100 degrees C for PPV/PCL and only 20 degrees C for PPP/CL. This pronounced effect may be due to higher thermal stability of PPV compared to PPP and the decrease in steric hindrance for PPV with PCL side chains. (C) 2008 Elsevier Ltd. All fights reserved. Keywords
Subject Keywords
Poly(phenylene vinylene)
,
Poly(epsilon-caprolactone)
,
Thermal degradation
,
Pyrolysis mass spectrometry
URI
https://hdl.handle.net/11511/31657
Journal
Polymer Degradation and Stability
DOI
https://doi.org/10.1016/j.polymdegradstab.2008.02.004
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene vinylene) with well-defined PSt side chains
Nur, Y.; Çolak, Demet; Cianga, I.; Yagci, Y.; Hacaloğlu, Jale (2008-10-01)
Thermal degradation characteristics of a new macromonomer polystyrene with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene) with well-defined polystyrene (PPV/PSt) as lateral substituents were investigated via direct pyrolysis mass spectrometry. A slight increase in thermal stability of PSt was detected for (PPV/PSt) and attributed to higher thermal stability of PPV backbone. It was almost impossible to differentiate products due to the decomposition of PPV backbone from those pro...
Thermal degradation of poly(p-phenylene-graft-ε-caprolactone) copolymer
Nur, Yusuf; Yurteri, Seda; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2007-01-01)
The thermal degradation of poly (p-phenylene-graft-epsilon-caprolactone) (PPP), synthesized by Suzuki polycondensation of poly(E-caprolactone) (PCL) with a central 2,5-dibromo-1,4-benzene on the chain with 1,4-phenylene-diboronic acid, has been studied via direct pyrolysis mass spectrometry. The thermal degradation occurred mainly in two steps. In the first step, decomposition of PCL chains occurred. A slight increase in thermal stability of PCL chains was noted. In the second stage of pyrolysis, the decomp...
Pyrolysis of of poly(methy methacrylate) copolymers
Ozlem-Gundogdu, Suriye; Gurel, Evren Aslan; Hacaloğlu, Jale (2015-05-01)
In this work, thermal degradation of copolymers of poly(methy methacrylate) namely, poly(methyl methacrylate-co-n-butyl acrylate), P(MMA-co-nBu), poly(methyl methacrylate-co-n-benzyl methacrylate) P(MMA-co-BzMA, and poly(methyl methacrylate-co-isobornyl acrylate), P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. It was determined that whether an available gamma-H with respect to the carbonyl groups is present or not determines the thermal degradation mechanisms of polyacrylates and po...
Pyrolysis of polyphenylenes with PCL or/and PSt side chains
Nur, Yusuf; Yurteri, Seda; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2007-01-01)
Thermal degradation characteristic of polyphenylenes is an important issue for developing a rational technology of polymer processing and applications. In this study, we discussed thermal degradation of polyphenylenes (PP) with poly(epsilon-caprolactone) (PCL) and/or PCL/polystyrene copolymers (PSt) prepared by combined controlled polymerization and cross-coupling processes via direct pyrolysis mass spectrometry. When PPgraft-PCL/PSt copolymers were considered, thermally less stabile PCL side chains decompo...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Nur, D. Çolak, I. Cianga, Y. Yagci, and J. Hacaloğlu, “Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains,”
Polymer Degradation and Stability
, pp. 904–909, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31657.