DDoS Attack Modeling and Detection Using SMO

2017-12-21
Daneshgadeh, Salva
Baykal, Nazife
Ertekin Bolelli, Şeyda
Over the last decade, Distributed Denial of Service (DDoS) attacks have been employed to cause huge financial and prestige loss to different kinds of e-business. Attackers also target governmental websites using DDoS attacks as a new weapon in the world of cyber war. The importance of the issue has inspired many researchers from academia and the industry to provide solutions to this type of challenging attack. In this study, we simulated DDoS attacks in a virtual lab and then collected firewall logs from the Security Information and Event Management (SIEM) platform of a company in the field of security management solutions. We extracted 14 research features from firewall logs and applied a SMO algorithm to train our data using 10 fold cross-validation. The SMO with PolyKernel was able to create a prediction model without any false alarm. We also tested our model with two different datasets. This research is an ongoing multistep study. Future research will concentrate on online DDoS detection.
16th IEEE International Conference on Machine Learning and Applications (ICMLA)

Suggestions

An Empirical Investigation of DDoS and Flash Event Detection Using Shannon Entropy, KOAD and SVM Combined
Daneshgadeh, Salva; Kemmerich, Thomas; Ahmed, Tarem; Baykal, Nazife (2019-01-01)
In the world of internet and communication technologies where our personal and business lives are inextricably tied to internet enabled services and applications, Distributed Denial of Service (DDoS) attacks continue to adversely affect the availability of these services and applications. Many frameworks have been presented in academia and industry to predict, detect and defend against DDoS attacks. The available solutions try to protect online services from DDoS attacks, but as yet there is no best-practic...
Online DDoS attack detection using Mahalanobis distance and Kernel-based learning algorithm
Cakmakci, Salva Daneshgadeh; Kemmerich, Thomas; Ahmed, Tarem; Baykal, Nazife (Elsevier BV, 2020-10-01)
Distributed denial-of-service (DDoS) attacks are constantly evolving as the computer and networking technologies and attackers' motivations are changing. In recent years, several supervised DDoS detection algorithms have been proposed. However, these algorithms require a priori knowledge of the classes and cannot automatically adapt to frequently changing network traffic trends. This emphasizes the need for the development of new DDoS detection mechanisms that target zero-day and sophisticated DDoS attacks....
A novel online approach to detect DDOS attacks using mahalanobis distance and Kernel-based learning
Daneshgadeh Çakmakçı, Salva; Baykal, Nazife; Department of Information Systems (2019)
Distributed denial-of-service (DDoS) attacks are continually evolving as the computer and networking technologies and attackers’ motivations are changing. In recent years, several supervised DDoS detection algorithms have been proposed. However, these algorithms require a priori knowledge of the classes and cannot automatically adapt to the frequently changing network traffic trends. This emphasizes the need for the development of new DDoS detection mechanisms that target zero-day and sophisticated DDoS att...
A classification approach for adaptive mitigation of SYN flood attacks Preventing performance loss due to SYN flood attacks
Degirmencioglu, Alptugay; Erdogan, Hasan Tugrul; Mizani, Mehrdad A.; Yilmaz, Oguz (2016-04-29)
SYN flood is a commonly used Distributed Denial of Service (DDoS) attack. SYN flood DDoS attacks consume considerable amount of resources in the target machine. Even with straightforward mitigation solutions, any attack causes resource waste and performance loss in the server, rendering it unable to provide service to legitimate clients. We propose an approach for SYN flood attack mitigation based on supervised learning classification methods which identify and block SYN flood traffic before they reach thei...
Static Malware Detection Using Stacked BiLSTM and GPT-2
Demirci, Deniz; Sahin, Nazenin; Sirlancis, Melih; Acartürk, Cengiz (2022-01-01)
In recent years, cyber threats and malicious software attacks have been escalated on various platforms. Therefore, it has become essential to develop automated machine learning methods for defending against malware. In the present study, we propose stacked bidirectional long short-term memory (Stacked BiLSTM) and generative pre-trained transformer based (GPT-2) deep learning language models for detecting malicious code. We developed language models using assembly instructions extracted from .text sections o...
Citation Formats
S. Daneshgadeh, N. Baykal, and Ş. Ertekin Bolelli, “DDoS Attack Modeling and Detection Using SMO,” presented at the 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, MEXICO, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31745.