Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization of polyaniline via pyrolysis mass spectrometry
Date
2008-04-05
Author
Hacaloğlu, Jale
Kücükyavuz, Zühal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
In this work, direct insertion probe pyrolysis mass spectrometry technique was applied to investigate the thermal and the structural characteristics of electrochemically prepared HCl and HNO3-doped polyaniline (PANI) films. It has been determined that the thermal degradation of both samples showed three main thermal degradation stages. The first stage around 50-60 degrees C was associated with evolution of solvent and low-molecular-weight species adsorbed on the polymer, the second stage just above 150 degrees C was attributed to evolution of dopant-based products, and the final degradation stage at moderate and elevated temperatures was associated with evolution of degradation products of the polymer. Chlorination and nitrolysis of aniline during the electrochemical polymerization were detected. Extent of substitution increased as the electrolysis period was increased. Furthermore, for the HNO3-doped PANI, the evolution of CO2 at elevated temperatures confirmed oxidation of the polymer film during electrolysis. (C) 2007 Wiley Periodicals, Inc.
Subject Keywords
Polyaniline
,
Pyrolysis
,
Thermal degradation
,
Mass spectrometry
URI
https://hdl.handle.net/11511/31774
Journal
Journal of Applied Polymer Science
DOI
https://doi.org/10.1002/app.27647
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Investigation of the effect of dopant on characteristics of poly(3-methyl thiophene) via pyrolysis mass spectrometry
Gözet, Tuba; Önal, Ahmet Muhtar; Hacaloğlu, Jale (2007-03-01)
In this work, a direct insertion probe pyrolysis mass spectrometry technique was applied to investigate the thermal and the structural characteristics of electrochemically prepared PF6- and BF4- doped poly(3-methylthiophene) (PMTh) to explore the effect of dopant on thermal and structural characteristics. It has been determined that the thermal degradation of PMTh occurs in two steps as in the case of polythiophene, (PTh). The first step was assigned to the loss of the dopant, and the second step to the deg...
Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry
Uyar, Tamer; Toppare, Levent Kamil; Hacaloğlu, Jale (2002-01-01)
A direct insertion probe pyrolysis mass spectrometry technique was used to perform a systematic thermal characterization of conducting polypyrrole doped with p-toluene sulfonic acid. The effect of dopant concentration on thermal stability and degradation products was investigated using undoped and dedoped polypyrrole samples. The data indicate that polymerization of pyrrole in the absence of dopant produces an aromatic structure, which transforms into the quinoid form at high dopant concentrations. Reductio...
Investigation of polymerization of benzoxazines and thermal degradation characteristics of polybenzoxazines via direct pyrolysis mass spectrometry
Fam, Shahla Bagheri; Uyar, Tamer; Ishida, Hatsuo; Hacaloğlu, Jale (2012-10-01)
Polymerization of benzoxazines and thermal degradation mechanisms of polybenzoxazines were investigated using the direct pyrolysis mass spectrometry (DP-MS) technique. The benzoxazine structures were based on phenol and aniline and on bisphenol-A and methylamine or aniline. Polymerizations of the benzoxazines were carried out by curing them at elevated temperatures without addition of initiator or catalyst. DP-MS data showed the presence of chains generated by opposing polymerization reaction pathways indic...
Characterization of polymer/nanoclay composites via direct pyrolysis mass spectrometry
Ozdemir, Esra; Hacaloğlu, Jale (2018-09-01)
In this work, direct probe mass spectrometry, DP-MS, method was applied to investigate the characteristics of polymer/organoclay composites. For this purpose organically modified montmorillonites involving four different alkyl quaternary ammonium salts were incorporated into polylactide, poly(methyl methacrylate) and polyethylene matrices. The morphology of the composites were first analyzed by x-ray diffraction, XRD, and transmission electron microscopy, TEM, measurements. The temperature regions at which ...
Investigation of the effect of substituent on the growth of polymer for 3-substituted polythiophenes via pyrolysis mass spectrometry
Aslan, Evren; Toppare, Levent Kamil; Hacaloğlu, Jale (2005-10-15)
In this study, direct pyrolysis mass spectrometry analyses of electrochemically polymerized poly(decanedioic acid bis-(2-thiophen-3-yl-ethyl)ester) and poly(terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester) were per-formed to investigate structural and thermal characteristics. It was found that when the ester linkages contain hydrocarbon chains, the growth of polymer occurred through both 2- and 5-positions. On the other hand, when the ester linkages contain more rigid groups such as phenyl, steric hindran...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Hacaloğlu and Z. Kücükyavuz, “Characterization of polyaniline via pyrolysis mass spectrometry,”
Journal of Applied Polymer Science
, pp. 400–405, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31774.