Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Information Augmentation for Human Activity Recognition and Fall Detection using Empirical Mode Decomposition on Smartphone Data
Download
index.pdf
Date
2019-10-01
Author
Sezer, Selçuk
Sürer, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
In this paper, we propose a novel design to reduce the number of sensors used in activity recognition and fall detection by using empirical mode decomposition (EMD) along with gravity filtering so as to untangle the useful information gathered from a single sensor, i.e. accelerometer. We focus on reducing the number of sensors utilized by augmenting the information obtained from accelerometer only given that the accelerometer is the most common and easy to access sensor on smartphones. To do so, one gravity component and three intrinsic mode functions (IMFs) are extracted from the accelerometer signal. In order to assess how informative each component is, the raw components are directly used for classification, i.e. without hand-crafting statistical features. The extracted signal components are then individually fed into parallelized random forest (RF) classifiers. The proposed design is evaluated on the publicly available MobiAct dataset. The results show that by only using accelerometer data within the proposed scheme, it is possible to reach the performance of two sensors (accelerometer and gyroscope) used in a conventional manner. This study provides an efficient and convenient-to-use solution for the smartphone applications in human activity recognition domain.
Subject Keywords
Human activity recognition
,
Fall detection
,
Empirical Mode Decomposition
,
Support Vector Machines
,
Random forest
URI
https://hdl.handle.net/11511/31865
DOI
https://doi.org/10.1145/3347122.3347126
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Sensor fusion of a camera and 2D LIDAR for lane detection and tracking
Yeniaydın, Yasin; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2019)
This thesis proposes a novel lane detection and tracking algorithm based on sensor fusion of a camera and 2D LIDAR. The proposed method is based on the top down view of a grayscale image, whose lane pixels are enhanced by the convolution with a 1D top-hat kernel. The convolved image is horizontally divided into a predetermined number of regions and the histogram of each region is computed. Next, the highest valued local maxima in a predefined ratio in the histogram plots are determined as candidate lane pix...
Abnormal Crowd Behavior Detection Using Novel Optical Flow-Based Features
Direkoglu, Cem; Sah, Melike; O'Connor, Noel E. (2017-09-01)
In this paper, we propose a novel optical flow based features for abnormal crowd behaviour detection. The proposed feature is mainly based on the angle difference computed between the optical flow vectors in the current frame and in the previous frame at each pixel location. The angle difference information is also combined with the optical flow magnitude to produce new, effective and direction invariant event features. A one-class SVM is utilized to learn normal crowd behavior. If a test sample deviates si...
Analysis of Face Recognition Algorithms for Online and Automatic Annotation of Personal Videos
Yılmaztürk, Mehmet; Ulusoy Parnas, İlkay; Çiçekli, Fehime Nihan (Springer, Dordrecht; 2010-05-08)
Different from previous automatic but offline annotation systems, this paper studies automatic and online face annotation for personal videos/episodes of TV series considering Nearest Neighbourhood, LDA and SVM classification with Local Binary Patterns, Discrete Cosine Transform and Histogram of Oriented Gradients feature extraction methods in terms of their recognition accuracies and execution times. The best performing feature extraction method and the classifier pair is found out to be SVM classification...
A General framework for adaptive radar detection based on fast and slow-time preprocessing
Saraç, Uğur Berkay; Güvensen, Gökhan Muzzaffer.; Department of Electrical and Electronics Engineering (2019)
This thesis is about the design of an adaptive radar detector under heterogeneous clutter environment using a small number of secondary data, which is at the same time robust to Doppler mismatch. To this end, the observations taken from heterogeneous clutter environment are first processed with a specially designed fast-time preprocessing matrix, cleansing the target contamination in the secondary range cells. Using these clean secondary data, the covariance matrix of the clutter is estimated via the parame...
Automated building detection from satellite images by using shadow information as an object invariant
Yüksel, Barış; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2012)
Apart from classical pattern recognition techniques applied for automated building detection in satellite images, a robust building detection methodology is proposed, where self-supervision data can be automatically extracted from the image by using shadow and its direction as an invariant for building object. In this methodology; first the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generate...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sezer and E. Sürer, “Information Augmentation for Human Activity Recognition and Fall Detection using Empirical Mode Decomposition on Smartphone Data,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31865.