Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal degradation of polystyrene composites. Part II. The effect of nanoclay
Date
2016-07-01
Author
KAYA, Hatice
Kaynak, Cevdet
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
In this work, thermal degradation behavior polystyrene/organoclay nanocomposites containing tribromophenol end-capped brominated epoxy oligomer, (BE) with or without Sb2O3 were investigated systematically via direct pyrolysis mass spectrometry. Incorporation of organically modified montmorillonite into polystyrene, (PS) matrix not only increased thermal stability but also the probability of radical recombination, disproportionation and carbonization reactions causing increase in the char yield. Exfoliation of organoclay in BE phase of PS-BE matrix affected the extent of radical coupling and disproportionation reactions between the thermal degradation products of PS and organic modifier. In addition, the evolution of BE based products was hindered partly and the attacks of HBr to epoxy units generating H2O became more efficient. During the pyrolysis of polystyrene/organoclay nanocomposite involving both BE and Sb2O3, the relative yields diagnostic products of both oxybromides and bromides of antimony were increased significantly in the temperature region where PS decomposition took place which in turn increased the efficiency of radical scavenging and reduced peak heat release rate while increasing limiting oxygen index.
Subject Keywords
Polystyrene
,
Brominated polyepoxy
,
Antimony oxide
,
Nanoclay
,
Thermal degradation
,
Direct pyrolysis mass spectrometry
URI
https://hdl.handle.net/11511/31879
Journal
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
DOI
https://doi.org/10.1016/j.jaap.2016.05.005
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Thermal degradation characteristics of polysulfones with benzoxazine end groups
Orhan, Tugba; Ates, Sahin; Hacaloğlu, Jale; Yagci, Yusuf (2012-01-01)
Thermal degradation behaviors of phenol and benzoxazine end-capped polysulfone macromonomers (PSU-OH and PSU-P-a) and pre-cured PSU-P-a in the absence and presence of aniline and phenol based benzoxazine monomer (P-a) were investigated via pyrolysis mass spectrometry. A significant increase in thermal stability of both polysulfone and polybenzoxazine chains upon polymerization of benzoxazine end groups was determined compared to phenol-ended polysulfones and aniline based monofunctional polybenzoxazine. The...
Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to co nanoparticles
Elmaci, Ayşegül; Hacaloğlu, Jale; Kayran, Ceyhan; Sakellariou, Georgios; Hadjichristidis, Nikos (2009-11-01)
Direct pyrolysis mass spectrometry analyses of polystyrene-block-poly(2-vinylpyridne), PS-b-P2VP, indicated that the thermal degradation of each component occurred independently through the decomposition pathways proposed for the corresponding homopolymers; depolymerization for PS and depolymerization and loss of protonated oligomers for P2VP by a more complex degradation mechanism. On the other hand, upon coordination to cobalt nanoparticles, thermal decomposition of the P2VP blocks was initiated by loss o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. KAYA, C. Kaynak, and J. Hacaloğlu, “Thermal degradation of polystyrene composites. Part II. The effect of nanoclay,”
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
, pp. 194–199, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31879.