Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors

2018-02-01
In this study, effect of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors (CFBCs) is investigated. The aim is to identify how important it is to include axial and radial variations of particle concentration along the splash and dilute zones in radiative heat transfer calculations and to determine the predictive accuracy of simple OD and 1D approximations for particle concentration distribution in the riser by benchmarking their predictions against a semi-empiric 2D axisymmetric model developed for a wide range of operating conditions and systems. Input data required for the radiation model are provided from measurements carried out in a 150 kWt cylindrical Circulating Fluidized Bed Combustor (CFBC) test rig burning low calorific value Turkish lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Radiative transfer equation (RTE) is solved for 2-D axisymmetric cylindrical enclosure which contains gray, absorbing, emitting gas mixture with gray, absorbing, emitting, anisotropically scattering particles bounded by diffuse, gray/black walls. Incident heat fluxes and source terms along the riser are predicted by the Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) with Leckner's correlations for combustion gases, geometric optics approximation for particles and normalized Henyey-Greenstein for the phase function. Comparisons reveal that OD and 1D representations of particle concentration distribution lead to overprediction of incident heat fluxes, in both splash and dilute zones, where discrepancy of OD model is larger. Similarly, errors in source term predictions introduced by simplifying the parade concentration distribution via deploying OD and 1D models are found to be significantly large. These findings indicate that rigorous evaluation of particle concentration distribution is essential for accurate prediction of radiative heat transfer in CFBCs despite its high CPU requirements. (C) 2017 Published by Elsevier Ltd.
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Suggestions

Influence of spectral particle properties on radiative heat transfer in optically thin and thick media of fluidized bed combustors
Ates, Cihan; Sen, Ozge; Selçuk, Nevin; Külah, Görkem (2017-12-01)
In this study, influence of spectral particle properties on radiative heat transfer in the freeboard/dilute zone of fluidized bed combustors (FBCs) is investigated. The aim is to identify how important it is to involve spectral particle properties and to determine the predictive accuracy of gray Mie and gray Geometric Optics (GOA) approximations in optically thin and thick media by benchmarking their predictions against spectral solutions. For that purpose, input data required for modelling radiative heat t...
Influence of soot on radiative heat transfer in bubbling fluidized bed combustors
Yaşar, Mehmet Soner; Selçuk, Nevin; Külah, Görkem (2021-08-01)
The effect of soot particles and aggregates on radiative heat transfer in bubbling fluidized bed combustors is investigated. For this purpose, a soot radiative property model based on Rayleigh scattering theory is coupled with in-house developed 1-D gray and spectral radiation codes and a 3-D spectral radiation code based on method of lines solution of discrete ordinates method for the application of (i) a 1-D slab problem involving combustion gases and soot and (ii) freeboard of a 0.3 MWt atmospheric bubbl...
Influence of fly ash composition on non-gray particle radiation in combusting systems
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-08-01)
In this study, chemical composition dependency of both radiative properties of ash particles and radiative heat exchange are investigated for conditions typically encountered in industrial coal-fired furnaces. For that purpose, chemical composition dependent / independent complex index of refraction models are utilized to evaluate (i) spectral particle absorption efficiencies, scattering efficiencies and asymmetry factors, (ii) particle cloud properties representing pulverized coal fired furnaces (PC-Fired)...
Effect of changing biomass source on radiative heat transfer during co-firing of high-sulfur content lignite in fluidized bed combustors
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-01-05)
In this study, effect of changing biomass source on radiative heat transfer during co-firing of high-sulfur content lignite in the freeboard of 300 kW(t) Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) is investigated by using an in-house developed radiation code based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM). The freeboard is treated as a 3D rectangular enclosure containing gray, absorbing, emitting gas with absorbing, emitting, anisotropically scattering particles surround...
Effect of limestone addition on radiative heat transfer during co-firing of high-sulfur content lignite with biomass in fluidized bed combustors
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-01-01)
In this study, influence of limestone addition on radiative heat transfer during co-firing of high-sulfur content lignite with olive residue in the freeboard of 300 kW(t) Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) is investigated by using an in-house developed radiation code based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM). The freeboard is treated as a 3D rectangular enclosure containing gray, absorbing, emitting gas with absorbing, emitting, anisotropically scattering p...
Citation Formats
C. Ates, N. Selçuk, and G. Külah, “Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, pp. 58–70, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31885.