Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system

2017-01-01
Atımtay, Aysel
Unlu, Alper
Engin, Berrin
Varol, Murat
OLGUN, HAYATİ
Atakül, Hüsnü
Two Turkish lignites which have different sulfur levels (2-2.9% dry) and ash levels (17-25% dry) were combusted with a Turkish forest red pine chips in a 750 kW-thermal capacity circulating fluidized bed combustor (CFBC) system. The combustion temperature was held at 850 +/- 50 degrees C. Flue gas emissions were measured by Gasmet DX-4000 flue gas analyzer. Two lignites were combusted alone, and then limestone was added to lignites to reduce SO2 emissions. Ca/S = 3 was used. 30% percent of red pine chips were added to the lignites for co-firing experiments without limestone in order to see the biomass effects. The results showed that with limestone addition SO2 concentration was reduced below the limit values for all lignites. CO emissions are high at low excess air ratios, gets lower as the excess air ratio increases. During co-firing experiments the temperature in the freeboard was 100-150 degrees C higher as compared to coal combustion experiments.
BIORESOURCE TECHNOLOGY

Suggestions

Co-combustion of high and low ash lignites with raw and torrefied biomass under air and oxy-fuel combustion atmospheres
Barzegar, Ramin; Yozgatlıgil, Ahmet; Atımtay, Aysel (2022-02-01)
Co-combustion characteristics of high and low ash lignites blended with raw and torrefied pine woodchips were studied by Thermogravimetric Analyzer (TGA) under air and oxy-fuel conditions. The lignites were blended with biomass samples at the mass fraction of 50/50 wt.%. Three heating rates of 10, 20, and 40 degrees C/min were chosen, and the characteristic temperatures, including initial, ignition, and burnout temperatures, were obtained. In order to estimate the activation energies of the co-combustion of...
Co-combustion of biocoal and lignite in a circulating fluidised bed combustor to decrease the impact on global warming
Keivani, Babak; OLGUN, HAYATİ; Atımtay, Aysel (2019-01-01)
This work covers co-combustion of biocoal obtained from red pine wood chips with Orhaneli lignite in a 30 kW-thermal capacity circulating fluidised bed combustor (CFBC) system in air and oxygen-enriched atmosphere. The combustor was of 108 mm inside diameter and 6 m height. The combustion temperature was held at 850+50 degrees C. Oxygen enriched combustion tests were carried out at different ratios of lignite and biocoal mixtures. Biocoal share in the fuel mixture was increased up to 50% by wt. It was found...
Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed
Atımtay, Aysel (2008-02-01)
In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. on-line concentrations of O-2, CO, CO2, SO2, NOx and total hydrocarbons (CmHn) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by chang...
Co-firing of steam coal with high sulfur content lignite in a bubbling fluidized bed combustor
Selçuk, Nevin; Altindag, Hakan (2005-05-25)
Combustion and emission behavior of 100 % steam coal (SET 1) and a mixture of 80 % by weight steam coal and 20 % by weight local lignite, characterized by high sulfur and ash contents, (SET 2) were investigated in the 0.3 MW, Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) Test Rig. Experiments were performed with limestone addition at various Ca/S molar ratios with fines recycle. In both sets of experiments, parameters other than Ca/S molar ratio were held as ne...
Utilization of fly ash from fluidized bed combustion of a Turkish lignite in production of blended cements
Kürkçü, Mehmet; Selçuk, Nevin; Department of Chemical Engineering (2006)
Fly ashes generated from fluidized bed combustion of low calorific value, high ash content Turkish lignites are characterized by high content of acidic oxides, such as SiO2, Al2O3 and Fe2O3, varying in the range 50-70%. However, there exists no study for the investigation of the possibility of using these ashes as concrete admixture. Therefore, in this study, characterization of fly ashes from fluidized bed combustion of a Turkish lignite and evaluation of these fly ashes as a substitute for Portland cement...
Citation Formats
A. Atımtay, A. Unlu, B. Engin, M. Varol, H. OLGUN, and H. Atakül, “Co-firing of pine chips with Turkish lignites in 750 kWth circulating fluidized bed combustion system,” BIORESOURCE TECHNOLOGY, pp. 601–610, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31891.