Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ECAP processing and mechanical milling of Mg and Mg-Ti powders: a comparative study
Date
2011-08-01
Author
Cakmak, Gulhan
Öztürk, Tayfur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
146
views
0
downloads
Cite This
A study was carried out into the possibility of employing ECAP processing in lieu of mechanical milling for the purpose of developing powder-based hydrogen storage alloys. Mg and Mg-Ti powder compacts were encapsulated in a copper block and were subjected to ECAP deformation to an apparent strain of epsilon = 4. This resulted in the consolidation of the compacts as well as in the refinement of their structures. The values of coherently diffracting volume size were as small as 70-80 nm, quite comparable to those achieved with mechanical milling. It is, therefore, concluded that ECAP processing can be employed successfully for the purpose of structural refinement. As for material synthesis, however, the ECAP is less efficient in expanding the interfacial area. Therefore, it is necessary to impose relatively heavy strains to able to achieve comparable expansion in the interfacial area. It appears that an advantage of ECAP deformation is the development of structures which have improved ability for milling. It is, therefore, recommended that in the processing of hydrogen storage alloys, the powder mixtures may be first processed with ECAP in open atmosphere and then by mechanical milling of a short duration carried out under protective atmosphere.
Subject Keywords
Severe plastic-deformation
URI
https://hdl.handle.net/11511/32034
Journal
JOURNAL OF MATERIALS SCIENCE
DOI
https://doi.org/10.1007/s10853-011-5506-8
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
EQUIVALENT STRAIN AND STRESS HISTORY IN TORSION TESTS
TEKKAYA, AE (1994-02-01)
Bulk and plane torsion tests are being used in industry to determine the flow curve of metals up to very high plastic strains. Despite their wide usage the experimental results obtained in torsion tests are still not being evaluated uniformly. Differences arise basically due to the conversion of the measured angle of twist into the corresponding equivalent strain. This paper shows that the often used equivalent strain expression by Nadai and Davis as well as Eichinger is invalid, since the so-called redunda...
Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti
Olmez, Rabia; Cakmak, Gulhan; Öztürk, Tayfur (2010-11-01)
A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comp...
Development of Electrochemical Reactors Using Dehydrogenases for Enantiopure Synthon Preparations (ERUDESP)
Demir, Ayhan Sıtkı(2011-6-30)
The aim of the project is the development of electrochemical reactors for the manufacture of fine chemicals with dehydrogenases as a process with almost zero waste emission. The production of enantio pure compounds with high EE’s can be achieved by using dehydrogenases as biocatalysts, because they express high enantio selectivity in ketone reduction, combined with broad substrate spectra by some of these enzymes. These proteins will be engineered for improved catalytic performance using the tools of molecu...
Combinatorial study of hydrogen storage alloys
Ölmez, Rabia; Öztürk, Tayfur; Department of Metallurgical and Materials Engineering (2009)
A combinatorial study was carried out for hydrogen storage alloys which involve processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. Material library was obtained in a post annealing treatment carried out at elevated temperatures which brings about solid state reactions between the powders yielding equilibrium phases in the r...
Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: Highly efficient and fast hydrogen generation system at room temperature
Karahan, Senem; Zahmakiran, Mehmet; Özkar, Saim (2011-04-01)
There has been rapidly growing interest for materials suitable to store hydrogen in solid state for transportation of hydrogen that requires materials with high volumetric and gravimetric storage capacity. B-N compounds such as ammonia-triborane, ammonia-borane and amine-borane adducts are well suited for this purpose due to their light weight, high gravimetric hydrogen storage capacity and inclination for bearing protic (N-H) and hydridic (B-H) hydrogens. In addition to them, more recent study [261 has sho...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Cakmak and T. Öztürk, “ECAP processing and mechanical milling of Mg and Mg-Ti powders: a comparative study,”
JOURNAL OF MATERIALS SCIENCE
, pp. 5559–5567, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32034.