Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay
Date
2018-01-01
Author
Ozdemir, Esra
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
303
views
0
downloads
Cite This
In this study, electrospun fibers of melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)-PEG blends involving 10, 15 and 20 wt% PEG and their corresponding composites with organically modified montmorillonite, Cloisite 30B were prepared and characterized by x-ray diffraction, differential scanning calorimetry, thermogravimetry and direct pyrolysis mass spectrometry techniques. The narrower fiber diameters observed for the PLA-PEG fibers involving organoclay compared to the corresponding neat fibers were associated with the presence of quaternary ammonium salt as organic modifier increasing electrical conductivity. Strong evidence for phase separation during the electrospinning process was detected for PLA-PEG fibers. On the other hand, for PLA-PEG composite fibers, as a consequence of the diffusion of both PLA and PEG chains from the bulk polymer into the galleries between the silicate layers of the organoclay, the interactions between PLA and PEG chains were enhanced and both components showed similar thermal characteristics, indicating lack of phase separation. These interactions further inhibited the interactions between the PLA chains and organic modifier of the organoclay
Subject Keywords
Pyrolysis mass spectrometry
,
Thermal degradation
,
Organoclay
,
Electrospinning
,
Composite fibers
,
Poly(lactide)-poly(ethylene glycol) blend fibers
URI
https://hdl.handle.net/11511/32070
Journal
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
DOI
https://doi.org/10.1016/j.jaap.2017.11.014
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry
Ozdemir, Esra; Tincer, Teoman; Hacaloğlu, Jale (2016-11-01)
In this study, melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)/PEG samples involving 10, 15 and 20 wt% PEG were prepared and characterized by direct pyrolysis mass spectrometry technique in addition to classical techniques such differential scanning calorimetry, thermogravimetric analyses and mechanical tests. The incorporation of PEG resulted in consistent and significant decrease in the tensile strength and modulus, and reduction in endothermic melting peak of PLA due to the plasticizing e...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Thermal degradation of poly(p-phenylene-graft-ε-caprolactone) copolymer
Nur, Yusuf; Yurteri, Seda; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2007-01-01)
The thermal degradation of poly (p-phenylene-graft-epsilon-caprolactone) (PPP), synthesized by Suzuki polycondensation of poly(E-caprolactone) (PCL) with a central 2,5-dibromo-1,4-benzene on the chain with 1,4-phenylene-diboronic acid, has been studied via direct pyrolysis mass spectrometry. The thermal degradation occurred mainly in two steps. In the first step, decomposition of PCL chains occurred. A slight increase in thermal stability of PCL chains was noted. In the second stage of pyrolysis, the decomp...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ozdemir and J. Hacaloğlu, “Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay,”
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
, pp. 181–188, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32070.