Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
EXACT NUMERICAL-SOLUTIONS FOR RADIATIVE HEAT-TRANSFER IN CYLINDRICAL FURNACES
Date
1988-05-01
Author
Selçuk, Nevin
TAHIROGLU, Z
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Exact expressions for the distributions of the components of radiative flux density and the radiative energy source term in terms of wall and medium temperature distributions have been formulated for an emitting absorbing medium of constant properties bounded by black walls of a cylindrical enclosure. The accuracy of numerical solutions has been tested on an idealized enclosure for which exact analytical solution of the expressions is possible and shown to have six‐figure accuracy. The exact expressions have then been solved numerically for an enclosure problem based on data reported previously on a large scale experimental furnace. The principal feature of the data is highly non‐uniform temperature distributions which are typical of the conditions encountered in industrial furnaces. These data have been chosen because of their practical importance and the non‐availability of exact solutions for such data. The resulting exact solutions have been tabulated and are intended to serve in the future as standards for testing the accuracy of the approximate predictions produced using various three‐dimensional flux models in cylindrical configurations.
Subject Keywords
Mathematics, interdisciplinary applications
URI
https://hdl.handle.net/11511/32103
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
DOI
https://doi.org/10.1002/nme.1620260513
Collections
Graduate School of Natural and Applied Sciences, Article