Modeling of Fluidized Bed Combustion of Lignite with High Nitrogen Content Cotton Residue

2019-11-10
Yasar, M. S.
Selçuk, Nevin
Kulah, G.
A comprehensive system model, previously developed for prediction of combustion behaviors of Turkish lignites, lignite/hazelnut shell, and lignite/olive residue blends in a 0.3-MWt atmospheric bubbling fluidized bed combustor (ABFBC), is extended for modeling of co-combustion of Turkish lignite and cotton residue. Cotton residue has high nitrogen content (similar to 4.1 wt% ar) unlike lignite (similar to 0.9 wt% ar), olive residue (similar to 1.6 wt% ar), and hazelnut shell (similar to 0.5 wt% ar), which leads to relatively high emissions of nitric oxides (NOx) and nitrous oxide (N2O). For accurate prediction of emissions of NO and N2O, a sufficiently detailed NO and N2O formation and reduction reaction scheme is incorporated into the existing model. The assessment of the accuracy of the model is tested by comparing its predictions with the experimental data obtained in a 0.3-MWt ABFBC where a typical Turkish lignite is co-fired with limestone and cotton residue. Reasonable agreement is obtained between the predicted and measured O-2, CO, CO2, SO2, NO, and N2O concentrations and temperature profiles. The results obtained in this study show that the addition of cotton residue increases emission of total nitrogenous species due to its high nitrogen content, but the main effect is observed in the increase of N2O formation. Furthermore, determination of the fuel nitrogen partitioning into char and volatiles and distribution of volatile nitrogen species are found to be the most important parameters for modeling of NO and N2O emissions in bubbling fluidized bed combustors.
COMBUSTION SCIENCE AND TECHNOLOGY

Suggestions

Mathematical modeling of a bubbling fluidized bed combustor co-fired with cotton residue and lignite
Yaşar, Mehmet Soner; Külah, Görkem; Selçuk, Nevin; Department of Chemical Engineering (2018)
A comprehensive system model, previously developed for prediction of combustion behaviors of Turkish lignites, lignite/hazelnut shell and lignite/olive residue blends in fluidized bed combustors, is extended for modeling of co-combustion of Turkish lignite and cotton residue in a bubbling fluidized bed combustor. Cotton residue has high nitrogen content (~ 4.1 wt. % a.r.) unlike lignite (~ 0.9 wt. % a.r.), olive residue (~ 1.6 wt. % a.r.) and hazelnut shell (~ 0.5 wt. % a.r.), which leads to relatively high...
Modelling of FBC of lignite with high nitrogencontet cotton Residue
Yaşar, Mehmet Soner; Selçuk, Nevin; Külah, Görkem (2019-06-16)
A comprehensive system model, previously developed for prediction of combustion behaviors of Turkish lignites, lignite/hazelnut shell, and lignite/olive residue blends in a 0.3-MWt atmospheric bubbling fluidized bed combustor (ABFBC), is extended for modeling of co-combustion of Turkish lignite and cotton residue. Cotton residue has high nitrogen content (~4.1 wt% ar) unlike lignite (~0.9 wt% ar), olive residue (~1.6 wt% ar), and hazelnut shell (~0.5 wt% ar), which leads to relatively high emissions of nitr...
Modeling of NOx emissions from fluidized bed combustion of high volatile lignites
Afacan, Onur; Gogebakan, Yusuf; Selçuk, Nevin (2007-01-01)
A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations ...
Simulation of circulating fluidized bed combustors firing indigenous lignite
Özkan, Mert; Selçuk, Nevin; Department of Chemical Engineering (2010)
A comprehensive model, previously developed for a rectangular parallelepiped shaped 0.3 MWt circulating fluidized bed combustor (CFBC) fired with high calorific value coal burning in sand and validated against experimental data is adapted to cylindrical configuration and is extended to incorporate NOx formation and reduction reactions and pressure drops around cyclone, downcomer and loop seal. Its predictive accuracy is tested by applying it to the simulation of Middle East Technical University (METU) 150 k...
Mathematical Modeling of a Bubbling Fluidized Bed Combustor Cofired with Lignite and Biomass
Külah, Görkem; Selçuk, Nevin (2010-01-01)
A comprehensive system model of fluidized bed combustor, previously developed and tested for the prediction of combustion behavior of fluidized bed combustors fired with lignite was extended for the modeling of cofiring of lignite with biomass by incorporating volatile release, char combustion, and population balance for biomass. The model predictions were validated against measurements taken on a Middle East Technical University 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor fired with lignite only, ...
Citation Formats
M. S. Yasar, N. Selçuk, and G. Kulah, “Modeling of Fluidized Bed Combustion of Lignite with High Nitrogen Content Cotton Residue,” COMBUSTION SCIENCE AND TECHNOLOGY, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32143.