Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Novel multiobjective TLBO algorithms for the feature subset selection problem
Date
2018-09-06
Author
Kiziloz, Hakan Ezgi
Deniz, Ayca
Dokeroglu, Tansel
Coşar, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
235
views
0
downloads
Cite This
Teaching Learning Based Optimization (TLBO) is a new metaheuristic that has been successfully applied to several intractable optimization problems in recent years. In this study, we propose a set of novel multiobjective TLBO algorithms combined with supervised machine learning techniques for the solution of Feature Subset Selection (FSS) in Binary Classification Problems (FSS-BCP). Selecting the minimum number of features while not compromising the accuracy of the results in FSS-BCP is a multiobjective optimization problem. We propose TLBO as a FSS mechanism and utilize its algorithm-specific parameterless concept that does not require any parameters to be tuned during the optimization. Most of the classical metaheuristics such as Genetic and Particle Swarm Optimization algorithms need additional efforts for tuning their parameters (crossover ratio, mutation ratio, velocity of particle, inertia weight, etc.), which may have an adverse influence on their performance. Comprehensive experiments are carried out on the well-known machine learning datasets of UCI Machine Learning Repository and significant improvements have been observed when the proposed multiobjective TLBO algorithms are compared with state-of-the-art NSGA-II, Particle Swarm Optimization, Tabu Search, Greedy Search, and Scatter Search algorithms.
Subject Keywords
Teaching learning based optimization
,
Multiobjective feature selection
,
Supervised learning
URI
https://hdl.handle.net/11511/32177
Journal
NEUROCOMPUTING
DOI
https://doi.org/10.1016/j.neucom.2018.04.020
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
An Efficient Metaheuristic Algorithm for Engineering Optimization: SOPT
Hasançebi, Oğuzhan (2012-06-01)
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps; namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependency on few parameters only are among the advantageous characteristics of the proposed SOPT algorithm. The efficienc...
An intervention framework for design and development of interactive video lectures based on video viewing behaviors: A learning analytics approach
Yürüm, Ozan Raşit; Yıldırım, İbrahim Soner; Taşkaya Temizel, Tuğba; Department of Information Systems (2021-9-7)
Video-based learning has become very popular together with the increase in the number of massive open online courses (MOOCs). Learners interacting with video naturally exhibit viewing behaviors based on clickstream interactions such as pause, forward, and backward. These are important inputs to predict learning variables and to develop an intervention framework. However, there is no guideline or method on how to use these behavioral patterns in favor of learners. The purpose of this study is to investigate ...
Closed-form sample probing for training generative models in zero-shot learning
Çetin, Samet; Cinbiş, Ramazan Gökberk; Department of Computer Engineering (2022-2-10)
Generative modeling based approaches have led to significant advances in generalized zero-shot learning over the past few-years. These approaches typically aim to learn a conditional generator that synthesizes training samples of classes conditioned on class embeddings, such as attribute based class definitions. The final zero-shot learning model can then be obtained by training a supervised classification model over the real and/or synthesized training samples of seen and unseen classes, combined. Therefor...
Comparison of regression techniques via Monte Carlo simulation
Mutan, Oya Can; Ayhan, Hüseyin Öztaş; Department of Statistics (2004)
The ordinary least squares (OLS) is one of the most widely used methods for modelling the functional relationship between variables. However, this estimation procedure counts on some assumptions and the violation of these assumptions may lead to nonrobust estimates. In this study, the simple linear regression model is investigated for conditions in which the distribution of the error terms is Generalised Logistic. Some robust and nonparametric methods such as modified maximum likelihood (MML), least absolut...
Genetic algorithm for the multiple-query optimization problem
Bayir, Murat Ali; Toroslu, İsmail Hakkı; Coşar, Ahmet (2007-01-01)
Producing answers to a set of queries with common tasks efficiently is known as the multiple-query optimization (MQO) problem. Each query can have several alternative evaluation plans, each with a different set of tasks. Therefore, the goal of MQO is to choose the right set of plans for queries which minimizes the total execution time by performing common tasks only once. Since MQO is an NP-hard problem, several, mostly heuristics based, solutions have been proposed for solving it. To the best of our knowle...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Kiziloz, A. Deniz, T. Dokeroglu, and A. Coşar, “Novel multiobjective TLBO algorithms for the feature subset selection problem,”
NEUROCOMPUTING
, pp. 94–107, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32177.