Bounded operators and complemented subspaces of Cartesian products

2011-02-01
DJAKOV, PLAMEN
TERZİOĞLU, AHMET TOSUN
Yurdakul, Murat Hayrettin
Zahariuta, V.
We study the structure of complemented subspaces in Cartesian products X x Y of Kothe spaces X and Y under the assumption that every linear continuous operator from X to Y is bounded. In particular, it is proved that each non-Montel complemented subspace with absolute basis E subset of X x Y is isomorphic to a space of the form E(1) x E(2), where E(1) is a complemented subspace of X and E(2) is a complemented subspace of Y. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
MATHEMATISCHE NACHRICHTEN

Suggestions

Factorization of unbounded operators on Kothe spaces
Terzioglou, T; Yurdakul, Murat Hayrettin; Zuhariuta, V (2004-01-01)
The main result is that the existence of an unbounded continuous linear operator T between Kothe spaces lambda(A) and lambda(C) which factors through a third Kothe space A(B) causes the existence of an unbounded continuous quasidiagonal operator from lambda(A) into lambda(C) factoring through lambda(B) as a product of two continuous quasidiagonal operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about the quasidiagonal characterization of the relation (lambda(A), lambda(B)) ...
Some finite-dimensional backward shift-invariant subspaces in the ball and a related factorization problem
Alpay, D; Kaptanoglu, HT (2000-12-15)
Beurling's theorem characterizes subspaces of the Hardy space invariant under the forward-shift operator in terms of inner functions. In this Note we consider the case where the ball replaces the open unit desk and the reproducing kernel Hilbert space with reproducing kernel 1/(1-Sigma (N)(1) a(j)w(j)*) replaces the Hardy space. We give explicit formulas which generalize Blaschke products in the case of spaces of finite codimension. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier...
Some cardinal invariants on the space C-alpha (X, Y)
Onal, S; Vural, C (Elsevier BV, 2005-05-14)
Let C-alpha (X, Y) be the set of all continuous functions from X to Y endowed with the set-open topology where a is a hereditarily closed, compact network on X such that closed under finite unions. We define two properties (E1) and (E2) on the triple (alpha, X, Y) which yield new equalities and inequalities between some cardinal invariants on C-alpha (X, Y) and some cardinal invariants on the spaces X, Y such as:
Some upper bounds for density of function spaces
Önal, Süleyman (Elsevier BV, 2009-05-01)
Let C-alpha(X, Y) be the set of all continuous functions from X to Y endowed with the set-open topology where alpha is a hereditarily closed, compact network on X which is closed Under finite unions. We proved that the density of the space C-alpha(X, Y) is at most iw(X) . d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function psi, and Y has a base consists of psi-convex Subsets of Y. We also pr...
Bounded factorization property for ℓ-Köthe spaces
Yurdakul, Murat Hayrettin; Taştüner, Emre (2023-01-01)
Let ℓ denote a Banach sequence space with a monotone norm in which the canonical system (en )n is an unconditional basis. We show that the existence of an unbounded continuous linear operator T between ℓ-Köthe spaces λℓ (A) and λℓ (C) which factors through a third ℓ-Köthe space λℓ (B) causes the existence of an unbounded continuous quasidiagonal operator from λℓ (A) into λℓ (C) factoring through λℓ (B) as a product of two continuous quasidiagonal operators. Using this result, we study when the triple (λℓ (A...
Citation Formats
P. DJAKOV, A. T. TERZİOĞLU, M. H. Yurdakul, and V. Zahariuta, “Bounded operators and complemented subspaces of Cartesian products,” MATHEMATISCHE NACHRICHTEN, pp. 217–228, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32283.