Detection of specific solvent rearrangement regions of an enzyme: NMR and ITC studies with aminoglycoside phosphotransferase(3 ')-IIIa

Özen, Can
Land, Miriam L.
Tjioe, Elina
Serpersu, Engin H.
This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3')-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative Delta H in H2O relative to D2O (Delta Delta H(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative Delta C-p values were observed for binding of aminoglycosides to APH. Delta C-p for the APH-neomycin complex was -1.6 kcal(.)mol(-1.)deg(-1). A break at 30 degrees C was observed in the APH-kanamycin complex yielding Delta C-p values of -0.7 kcal(.)mol(-1.)deg(-1) and -3.8 kcal(.)mol(-1.)deg(-1) below and above 30 degrees C, respectively. Neither the change in cessible surface area (Delta ASA) nor contributions from heats of ionization were sufficient to explain the large negative Delta C-p values. Most significantly, N-15-H-1 HSQC experiments showed that temperature-dependent shifts of the backkbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 C only in the APH-kanamycin complex in spectra collected between 21 degrees C and 38 degrees C. These amino acids represent solvent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect Delta C-p and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.


Identification of small-molecule urea derivatives as novel NAMPT inhibitors via pharmacophore-based virtual screening
Ozgencil, Fikriye; EREN, GÖKÇEN; ÖZKAN, YEŞİM; GÜNTEKİN ERGÜN, SEZEN; Atalay, Rengül (Elsevier BV, 2020-01-01)
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-prophosphate (PRPP) to yield nicotinamide mononucleotide (NMN), a rate limiting enzyme in a mammalian salvage pathway of nicotinamide adenine dinucleotide (NAD(+)) synthesis. Recently, intracellular NAD(+) has received substantial attention due to the recent discovery that several enzymes including poly(ADPribose) polymerases (PARPs), mono(ADP-ribose) transferases (ARTs), and sirtuins (SIR...
Identification of electron acceptor properties of Penicillium camemberti used for effective treatment of chlorinated organic compounds
Taseli, BK; Gökçay, Celal Ferdi (2005-01-01)
Two methods described in this paper use respirometric monitoring of the accumulated oxygen uptake rate, following the addition of bleachery effluents to a reactor containing Penicillium camemberti and detection of inorganic chloride removal by a chloride electrode for electron acceptor identification. In the case of respirometric studies, adsorbable organic halogens (AOX) removal was retarded at high acetate concentrations and the metabolism shifted towards aerobic respiration. Contrary to this, aerobic res...
Purification and characterization of an intracellular chymotrypsin-like serine protease from Thermoplasma volcanium
Kocabıyık, Semra (2006-01-01)
An intracellular serine protease produced by Thermoplasma (Tp.) voleanium was purified using a combination of ammonium sulfate fractionation, ion exchange, and et-casein agarose affinity chromatography. This enzyme exhibited the highest activity and stability at pH 7.0, and at 50 degrees C. The purifed enzyme hydrolyzed synthetic peptides preferentially at the carboxy terminus of phenylalanine or leucine and was almost completely inhibited by PMSF, TPCK, and chymostatin, similarly to a chymotrypsin-like ser...
Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CNx) in Acidic Media Using Phosphate Anion
Mamtani, Kuldeep; Jain, Deeksha; Zemlyanov, Dmitry; Çelik, Gökhan; Luthman, Jennifer; Renkes, Gordon; Co, Anne C.; Ozkan, Umit S. (2016-10-07)
To probe the active sites of nitrogen-doped carbon nanostructures (CN), the effect of dihydrogen phosphate (H2PO4-) anion on their oxygen reduction reaction (ORR) performance was investigated by adding increasing concentrations of phosphoric acid in half-cell measurements. A linear decrease in specific kinetic current at 0.7 V was noted with increasing phosphate anion concentration. It was also found that the adsorption of phosphate species on CN., was strong and the corresponding ORR activity was not recov...
Synthesis of 1,2,3,5- tetrasubstituted pyrrole derivatives via 5-exo-dig type cyclization and stereoselective functionalisation of ferrocene derivatives
Kayalar, Metin; Demir, Ayhan Sıtkı; Department of Chemistry (2005)
A convenient and new method for the synthesis of 1,2,3,5-tetrasubstituted pyrrole derivatives starting from 1,3,-dicarbonyl compounds through acid catalyzed cyclization reaction is described. Alkylation of 1,3-dicarbonyl compound with propargyl bromide followed by one step cyclization with the introduction of primary amines in the presence of catalytic amount of triflouroacetic acid (TFA) affords the corresponding pyrrole derivatives in high yields. The investigations on the studies of developing a new meth...
Citation Formats
C. Özen, M. L. Land, E. Tjioe, and E. H. Serpersu, “Detection of specific solvent rearrangement regions of an enzyme: NMR and ITC studies with aminoglycoside phosphotransferase(3 ’)-IIIa,” BIOCHEMISTRY, pp. 40–49, 2008, Accessed: 00, 2020. [Online]. Available: