Hide/Show Apps

Metamorphic evolution of the Karakaya Complex in northern Turkey based on phyllosilicate mineralogy

2015-04-01
TETİKER, SEMA
YALÇIN, HÜSEYİN
BOZKAYA, ÖMER
Göncüoğlu, Mehmet Cemal
The Triassic Karakaya Complex (KC) of the Sakarya Composite Terrane in northern Turkey is traditionally subdivided into two units. The Lower Karakaya Complex (LKC) consists of a tectonic m,lange with blocks of metabasic rocks, metacarbonates, meta-arenites and metapelites that have been affected by high pressure/low temperature metamorphism. It is followed by a low pressure/low temperature metamorphic overprint; the latter is the only metamorphic event in some tectonic slivers of the LKC. The Upper Karakaya Complex (UKC) units are primarily composed of diagenetic to low-grade metamorphic rocks, comprising Late Permian and Triassic cherts and blocks of OIB-type volcanic rocks interfingering with Anisian limestones. LKC slide-blocks of variable sizes are frequently observed within the UKC. Phyllosilicates of LKC and UKC were examined for their abundance, crystallinity, polytype and b cell dimension. Trioctahedral chamositic chlorites have IIb polytype and phengites 2 M (1) polytypes in the LKC units and 2 M (1) + 1 M + 1M (d) polytypes of phengitic dioctahedral illites in the UKC units. Kubler index data correspond to the low anchizone and epizone for the LKC units, and to the high diagenesis-low anchizone, and in part to the epizone for the UKC units. The b values of illites are consistent with a high-pressure facies series for the LKC, but only intermediate-pressure facies for the UKC. According to textural features, mineral paragenesis, clay transformations, index minerals, and b values, the lower-middle parts of the LKC represent an accretional tectonic setting, whereas the UKC units reflect pressure temperature conditions of an extensional basin affected by high heat flow.