Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mathematical Modeling of a Bubbling Fluidized Bed Combustor Cofired with Lignite and Biomass
Date
2010-01-01
Author
Külah, Görkem
Selçuk, Nevin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
361
views
0
downloads
Cite This
A comprehensive system model of fluidized bed combustor, previously developed and tested for the prediction of combustion behavior of fluidized bed combustors fired with lignite was extended for the modeling of cofiring of lignite with biomass by incorporating volatile release, char combustion, and population balance for biomass. The model predictions were validated against measurements taken on a Middle East Technical University 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor fired with lignite only, lignite with limestone addition, and about 50/50 lignite-olive residue mixture with limestone addition. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO2 emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass.
Subject Keywords
Biomass
,
Cofiring
,
Fluidized bed combustion model
,
Lignite
URI
https://hdl.handle.net/11511/32684
Journal
COMBUSTION SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/00102200903466244
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Modeling of NOx emissions from fluidized bed combustion of high volatile lignites
Afacan, Onur; Gogebakan, Yusuf; Selçuk, Nevin (2007-01-01)
A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations ...
Simulation of circulating fluidized bed combustors firing indigenous lignite
Özkan, Mert; Selçuk, Nevin; Department of Chemical Engineering (2010)
A comprehensive model, previously developed for a rectangular parallelepiped shaped 0.3 MWt circulating fluidized bed combustor (CFBC) fired with high calorific value coal burning in sand and validated against experimental data is adapted to cylindrical configuration and is extended to incorporate NOx formation and reduction reactions and pressure drops around cyclone, downcomer and loop seal. Its predictive accuracy is tested by applying it to the simulation of Middle East Technical University (METU) 150 k...
Assessment of a model with char attrition for a bubbling atmospheric fluidized-bed combustor
Gogebakan, Y; Selçuk, Nevin (2004-05-01)
A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized-bed combustors, is extended to incorporate char attrition and is applied to the simulation of a 0.3 MegaWatt (MW) atmospheric bubbling fluidized-bed combustor burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. The effect of this incorporation is assessed by comparing the predictions of the model with and without attrition with measurements. Favorable comparisons o...
Mathematical modeling of a bubbling fluidized bed combustor co-fired with cotton residue and lignite
Yaşar, Mehmet Soner; Külah, Görkem; Selçuk, Nevin; Department of Chemical Engineering (2018)
A comprehensive system model, previously developed for prediction of combustion behaviors of Turkish lignites, lignite/hazelnut shell and lignite/olive residue blends in fluidized bed combustors, is extended for modeling of co-combustion of Turkish lignite and cotton residue in a bubbling fluidized bed combustor. Cotton residue has high nitrogen content (~ 4.1 wt. % a.r.) unlike lignite (~ 0.9 wt. % a.r.), olive residue (~ 1.6 wt. % a.r.) and hazelnut shell (~ 0.5 wt. % a.r.), which leads to relatively high...
Mathematical modeling of nox emissions in bubbling fluidized bed combustors
Afacan, M. Onur; Selçuk, Nevin; Department of Chemical Engineering (2005)
A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high volatile matter in their own ashes. The predictive accuracy of the model was assessed by comparing its predictions with measurements taken previously on the same rig. Favorable comparisons are obtaine...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Külah and N. Selçuk, “Mathematical Modeling of a Bubbling Fluidized Bed Combustor Cofired with Lignite and Biomass,”
COMBUSTION SCIENCE AND TECHNOLOGY
, pp. 600–612, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32684.