Screened Poisson Hyperfields for Shape Coding

Guler, R. A.
Tarı, Zehra Sibel
We present a novel perspective on shape characterization using the screened Poisson equation. We discuss that the effect of the screening parameter is a change of measure of the underlying metric space. Screening also indicates a conditioned random walker biased by the choice of measure. A continuum of shape fields is created by varying the screening parameter or, equivalently, the bias of the random walker. In addition to creating a regional encoding of the diffusion with a different bias, we further break down the influence of boundary interactions by considering a number of independent random walks, each emanating from a certain boundary point, whose superposition yields the screened Poisson field. Probing the screened Poisson equation from these two complementary perspectives leads to a high-dimensional hyperfield: a rich characterization of the shape that encodes global, local, interior, and boundary interactions. To extract particular shape information as needed in a compact way from the hyperfield, we apply various decompositions either to unveil parts of a shape or parts of a boundary or to create consistent mappings. The latter technique involves lower-dimensional embeddings, which we call screened Poisson encoding maps (SPEM). The expressive power of the SPEM is demonstrated via illustrative experiments as well as a quantitative shape retrieval experiment over a public benchmark database on which the SPEM method shows a high-ranking performance among the existing state-of-the-art shape retrieval methods.


Generalized bent functions with perfect nonlinear functions on arbitrary groups
Yılmaz, Emrah Sercan; Özbudak, Ferruh; Department of Cryptography (2012)
This thesis depends on the paper ‘Non-Boolean Almost Perfect Nonlinear Functions on Non- Abelian Groups’ by Laurent Poinsot and Alexander Pott and we have no new costructions here. We give an introduction about character theory and the paper of Poinsot and Pott, and we also compare previous definitions of bent functions with the definition of the bent function in the paper. As a conclusion, we give new theoretical definitions of bent, PN, APN ana maximum nonlinearity. Moreover, we show that bent and PN func...
On the Orthogonality of q-Classical Polynomials of the Hahn Class
Alvarez-Nodarse, Renato; Adiguzel, Rezan Sevinik; Taşeli, Hasan (2012-01-01)
The central idea behind this review article is to discuss in a unified sense the orthogonality of all possible polynomial solutions of the q-hypergeometric difference equation on a q-linear lattice by means of a qualitative analysis of the q-Pearson equation. To be more specific, a geometrical approach has been used by taking into account every possible rational form of the polynomial coefficients in the q-Pearson equation, together with various relative positions of their zeros, to describe a desired q-wei...
A Window-based characterization method for biophysical time series
Katırcıoğlu, Deniz; Baykal, Nazife; Department of Medical Informatics (2017)
In thesis, we propose a robust similarity score-based time series characterization method, termed as Window-based Time series Characterization (WTC). Specifically, WTC generates domain-interpretable results and involves remarkably low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, we apply WTC to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available ...
The moduli of surfaces admitting genus two fibrations over elliptic curves
Karadoğan, Gülay; Önsiper, Mustafa Hurşit; Department of Mathematics (2005)
In this thesis, we study the structure, deformations and the moduli spaces of complex projective surfaces admitting genus two fibrations over elliptic curves. We observe that, a surface admitting a smooth fibration as above is elliptic and we employ results on the moduli of polarized elliptic surfaces, to construct moduli spaces of these smooth fibrations. In the case of nonsmooth fibrations, we relate the moduli spaces to the Hurwitz schemes H(1,X(d),n) of morphisms of degree n from elliptic curves to the ...
Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm
Gürel, Levent; Ergül, Özgür Salih (2007-08-31)
We present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy...
Citation Formats
R. A. Guler, Z. S. Tarı, and G. ÜNAL, “Screened Poisson Hyperfields for Shape Coding,” SIAM JOURNAL ON IMAGING SCIENCES, pp. 2558–2590, 2014, Accessed: 00, 2020. [Online]. Available: