Screened Poisson Hyperfields for Shape Coding

Download
2014-01-01
Guler, R. A.
Tarı, Zehra Sibel
ÜNAL, GÖZDE
We present a novel perspective on shape characterization using the screened Poisson equation. We discuss that the effect of the screening parameter is a change of measure of the underlying metric space. Screening also indicates a conditioned random walker biased by the choice of measure. A continuum of shape fields is created by varying the screening parameter or, equivalently, the bias of the random walker. In addition to creating a regional encoding of the diffusion with a different bias, we further break down the influence of boundary interactions by considering a number of independent random walks, each emanating from a certain boundary point, whose superposition yields the screened Poisson field. Probing the screened Poisson equation from these two complementary perspectives leads to a high-dimensional hyperfield: a rich characterization of the shape that encodes global, local, interior, and boundary interactions. To extract particular shape information as needed in a compact way from the hyperfield, we apply various decompositions either to unveil parts of a shape or parts of a boundary or to create consistent mappings. The latter technique involves lower-dimensional embeddings, which we call screened Poisson encoding maps (SPEM). The expressive power of the SPEM is demonstrated via illustrative experiments as well as a quantitative shape retrieval experiment over a public benchmark database on which the SPEM method shows a high-ranking performance among the existing state-of-the-art shape retrieval methods.
SIAM JOURNAL ON IMAGING SCIENCES

Suggestions

Generalized bent functions with perfect nonlinear functions on arbitrary groups
Yılmaz, Emrah Sercan; Özbudak, Ferruh; Department of Cryptography (2012)
This thesis depends on the paper ‘Non-Boolean Almost Perfect Nonlinear Functions on Non- Abelian Groups’ by Laurent Poinsot and Alexander Pott and we have no new costructions here. We give an introduction about character theory and the paper of Poinsot and Pott, and we also compare previous definitions of bent functions with the definition of the bent function in the paper. As a conclusion, we give new theoretical definitions of bent, PN, APN ana maximum nonlinearity. Moreover, we show that bent and PN func...
On the Orthogonality of q-Classical Polynomials of the Hahn Class
Alvarez-Nodarse, Renato; Adiguzel, Rezan Sevinik; Taşeli, Hasan (2012-01-01)
The central idea behind this review article is to discuss in a unified sense the orthogonality of all possible polynomial solutions of the q-hypergeometric difference equation on a q-linear lattice by means of a qualitative analysis of the q-Pearson equation. To be more specific, a geometrical approach has been used by taking into account every possible rational form of the polynomial coefficients in the q-Pearson equation, together with various relative positions of their zeros, to describe a desired q-wei...
An error analysis of iterated defect correction methods for linear differential-algebraic equations
Karasözen, Bülent (1996-01-01)
Asymptotic expansions of the global error of iterated defect correction (IDeC) techniques based on the implicit Euler method for linear differential-algebraic equations (dae's) of arbitrary index are analyzed. The dependence of the maximum attainable convergence order on the degree of the interpolating polynomial, number of defect correction steps, and on the index of the differential-algebraic system is given. The efficiency of IDeC method and extrapolation is compared on the basis of numerical experiments...
Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm
Gürel, Levent; Ergül, Özgür Salih (2007-08-31)
We present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy...
On the consistency of the solutions of the space fractional Schroumldinger equation (vol 53, 042105, 2012)
Bayin, Selcuk S. (2012-08-01)
Recently we have reanalyzed the consistency of the solutions of the space fractional Schroumldinger equation found in a piecewise manner, and showed that an exact and a proper treatment of the relevant integrals prove that they are consistent. In this comment, for clarity, we present additional information about the critical integrals and describe how their analytic continuation is accomplished.
Citation Formats
R. A. Guler, Z. S. Tarı, and G. ÜNAL, “Screened Poisson Hyperfields for Shape Coding,” SIAM JOURNAL ON IMAGING SCIENCES, pp. 2558–2590, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32694.