Hide/Show Apps

A FILTRATION ON EQUIVARIANT BOREL-MOORE HOMOLOGY

Download
2019-07-04
Bingham, Aram
Can, Mahir Bilen
Ozan, Yıldıray
Let G / H be a homogeneous variety and let X be a G-equivariant embedding of G / H such that the number of G-orbits in X is finite. We show that the equivariant Borel-Moore homology of X has a filtration with associated graded module the direct sum of the equivariant Borel-Moore homologies of the G-orbits. If T is a maximal torus of G such that each G-orbit has a T-fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel-Moore homology of X. We apply our findings to certain wonderful compactifications as well as to double flag varieties.