Computer-aided planning and design of manufacturing simulation experiments

1996-09-01
An simulation has become a major tool in studying discrete manufacturing systems, experimental design issues have started to receive much attention. Although the importance of proper experimentation is often emphasized in the literature on discrete event simulation, it is neglected in most practical simulation studies. The main reason for this neglect is that the design and analysis of a simulation experiment require expertise in experimental design methodology as well as familiarity with traditional statistical output analysis methods. This article presents an attempt to structure the process of planning and designing simulation experiments, and proposes a knowledge-based system, namely Design Of Experiments for Simulation (DOES), that assists the inexperienced analyst in this process. The proposed system takes the analyst through a planning process based on the simulation objectives.

Suggestions

Model based preliminary design and optimization of aircrafts
Özdemir, Mustafa; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2022-8)
This study aims to create an interdisciplinary, multi-level design approach that is based on six degrees of freedom mathematical model. The model provides all disciplines to communicate with each other simultaneously, thanks to an automated process chain system. The main advantage of automatization of analyses for the design process is observing interdisciplinary effects clearly without wasting time and money. Instead of using only empirical relations, in this study, calculations are originating from trim a...
Real-time hardware-in-the-loop simulation of electrical machine systems using FPGAs
Üşenme, Serdar; Dilan, R.A.; Dölen, Melik; Koku, Ahmet Buğra (2009-11-18)
This study focuses on the development an integrated software and hardware platform that is capable of performing real-time simulation of dynamic systems, including electrical machinery, for the purpose of hardware-in-the-loop simulation (HILS). The system to be controlled is first defined using a block diagram editor. The defined model is then compiled and downloaded onto an FPGA (¿Field Programmable Gate Array¿) based hardware platform, which is to interface with the controller under test and carry out the...
Computational design learning: the smartgeometry case
Acıcan, Öykü; Gürsel Dino, İpek; Department of Architecture (2019)
Computational design has brought in novel concepts to architecture and design disciplines by an integration of interdisciplinary knowledge, tools and methods. Computational design learning has entered the curriculum of architecture, and gained significance over time. Experiential learning environments such as computational design workshops offer strategies for a better understanding of the contemporary needs of computational design learning. Smartgeometry (SG) is a computational design organization that ope...
Model management for hypothesis-driven simulation experiment workflows
Çam, Sema; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2022-9-05)
With today's breakthroughs in computational science and engineering, research experts can now simulate a lot of experiments on computers. Experiment specification is aided by frameworks and support systems for reusability and reproducibility of scientific research, as well as domain-specific languages, domain models, ontologies, data models, statistical analysis methods, and other types of tools and assets with related formalisms. Despite this, most frameworks or support tools for experiment specification i...
Numerical simulation of solidification kinetics in A356/SiCp composites for assessment of as-cast particle distribution
CETIN, Arda; Kalkanlı, Ali (Elsevier BV, 2009-06-01)
The present work is aimed at studying the effect of solidification rate on reinforcement clustering in particle reinforced metal matrix composites (PMMCs) through numerical simulations and experimental studies. A macrotransport-solidification kinetics (MTSK) model was used to simulate the solidification kinetics of the PMMCs. The experimental validation of the numerical model was achieved through the Newtonian and Fourier thermal analysis methods. Results reveal that the MTSK model can be successfully used ...
Citation Formats
N. E. Özdemirel and G. Köksal, “Computer-aided planning and design of manufacturing simulation experiments,” SIMULATION, pp. 171–191, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32920.