Structure and stability of GenCm-n clusters

2003-07-04
Katırcıoğlu, Şenay
Density functional theory method has been used to predict the structural and energetic properties of GenCm-n (n = l,m = 3-14; n = 2,m = 4-15) isomers. The optimized stable structures have been found to be linear(chain) for all GenCm-n(n = I, m = 3-9; n = 2, m = 4-10) clusters and planar(ring) for all GenCm-1 (n = 1,m = 10-14; n = 2, m = 11-15) isomers. It has been also found that the GenCm-n (n = 1, m = 3-14; n = 2, m = 4-15) clusters with odd m are more stable than those with even m.
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM

Suggestions

Structural and electronic properties of InmSen microclusters: density functional theory calculations
Erkoc, S; Katırcıoğlu, Şenay; Yilmaz, T (2001-06-15)
We have investigated the structural and electronic properties of isolated InmSen microclusters for m + n less than or equal to 4 by performing density functional theory calculations. We have obtained the optimum geometries, possible dissociation channels and the electronic structure of the clusters considered.
Density functional theory calculations of small ZnmSn clusters
Katırcıoğlu, Şenay (2001-07-16)
We have investigated the structural and electronic properties of isolated neutral ZnmSn clusters for m + n less than or equal to 4 by performing density functional theory calculations at B3LYP level. We have obtained the optimum geometries, the electronic structures, and the possible dissociation channels of the clusters considered.
Structural and electronic properties of bare and hydrogenated silicon clusters
Katırcıoğlu, Şenay (2001-02-01)
We have investigated the structural and electronic properties of both bare and hydrogenated Si-m (m = 5,17, 29, 35,47) clusters using density functional theory. It has been found that the total binding energy decreases as the cluster size increases for both bare and hydrogenated silicon clusters. Moreover, optimization contracts the clusters: optimized geometry of bare clusters is quite different from those of hydrogenated clusters. The electronic structure calculations give the size-dependent band gap for ...
Investigation of ruthenium-copper bimetallic catalysts for direct epoxidation of propylene: A DFT study
Kizilkaya, Ali Can; Senkan, Selim; Önal, Işık (2010-09-01)
Propylene epoxidation reactions are carried out on Ru-Cu(1 1 1) and Cu(1 1 1) surfaces with periodic density functional theory (DFT) calculations. Ru-Cu(1 1 1) surface is modeled as Cu(1 1 1) monolayer totally covering the Ru(0 0 0 1) surface underneath, in accordance with the literature. It is shown that the Ru-Cu(1 1 1) surface is ineffective for propylene oxide formation since it has a lower energy barrier (0.48 eV) for the stripping of the allylic hydrogen of propylene and a higher energy barrier (0.92 ...
Cluster, surface and bulk properties of ZnCd binary alloys: Molecular-dynamics simulations
Erkoç, Şakir (2005-01-01)
The structural and electronic properties of isolated neutral Zn Cd-n clusters for m+n <= 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features ...
Citation Formats
Ş. Katırcıoğlu, “Structure and stability of GenCm-n clusters,” JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, pp. 295–302, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33242.